【題目】如圖a,已知拋物線y=-x2+bx+c經(jīng)過(guò)點(diǎn)A(4,0) 、C(0,2),與x軸的另一個(gè)交點(diǎn)為B.
(1)求出拋物線的解析式.
(2)如圖b,將△ABC繞AB的中點(diǎn)M旋轉(zhuǎn)180°得到△BAC′,試判斷四邊形BC′AC的形狀.并證明你的結(jié)論.
(3)如圖a,在拋物線上是否存在點(diǎn)D,使得以A、B、D三點(diǎn)為頂點(diǎn)的三角形與△ABC全等?若存在,請(qǐng)直接寫(xiě)出點(diǎn)D的坐標(biāo);若不存在請(qǐng)說(shuō)明理由.
【答案】(1)y=-x2+x+2;(2)四邊形BC′AC為矩形,見(jiàn)解析;(3)存在,(3,2)
【解析】
(1)由點(diǎn)A、C的坐標(biāo),利用待定系數(shù)法即可求出拋物線的解析式;
(2)由點(diǎn)A、B、C的坐標(biāo)可得出OA、OC、OB的長(zhǎng)度,利用勾股定理可求出AC、BC的長(zhǎng),由AC2+BC2=25=AB2可得出∠ACB=90°,再利用旋轉(zhuǎn)的性質(zhì)即可找出四邊形BC′AC為矩形;
(3)假設(shè)存在這樣的點(diǎn)D,設(shè)D(x, -x2+x+2),則有-x2+x+2=2,求出x的值再進(jìn)行判斷即可.
(1)∵拋物線y=-x2+bx+c經(jīng)過(guò)點(diǎn)A(4,0) 、C(0,2),
∴
解得,
∴拋物線的解析式為:y=-x2+x+2
(2)四邊形BC′AC為矩形.
令y=0,則-x2+x+2=0,解得,
∴B(-1,0)
∵A(4,0) 、C(0,2),
∴OB=1,OA=4,OC=2,
由勾股定理求得:BC=,AC=2
又AB=5,
∴
∴△ABC直角三角形,∠BCA=90°,
∵△ABC繞AB的中點(diǎn)M旋轉(zhuǎn)
∴四邊形BC′AC為平行四邊形,
又∠BCA=90°
∴四邊形BC′AC為矩形.
(3)設(shè)D(x, -x2+x+2),則有-x2+x+2=2,
解得,,(不符合題意,舍去),
∴D(3,2)
故存在點(diǎn)D,使得以A、B、D三點(diǎn)為頂點(diǎn)的三角形與△ABC全等.點(diǎn)D的坐標(biāo)為(3,2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的盒子中裝有大小和形狀相同的3個(gè)紅球和2個(gè)白球,把它們充分?jǐn)噭颍?/span>
(1)求從中任意抽取1個(gè)球恰好是紅球的概率;
(2)學(xué)校決定在甲、乙兩名同學(xué)中選取一名作為學(xué)生代表發(fā)言,制定如下規(guī)則:從盒子中任取兩個(gè)球,若兩球同色,則選甲;若兩球異色,則選乙,你認(rèn)為這個(gè)規(guī)則公平嗎?請(qǐng)用列表法或畫(huà)樹(shù)狀圖法加以說(shuō)明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了測(cè)量一個(gè)鐵球的直徑,將該鐵球放入工件槽內(nèi),測(cè)得的有關(guān)數(shù)據(jù)如圖所示(單位:cm),則該鐵球的直徑為( )
A.12 cmB.10 cmC.8 cmD.6 cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形中,、分別是、的中點(diǎn),連接、、、,且.
(1)求證:;
(2)若,求的長(zhǎng);
(3)在(2)的條件下,求出的外接圓圓心與的外接圓圓心之間的距離?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解方程.(1)用配方法解下列一元二次方程. x2-x-=0.
(2)兩個(gè)數(shù)的和為8,積為9.75,求這兩個(gè)數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】水務(wù)部門(mén)為加強(qiáng)防汛工作,決定對(duì)馬邊河上某電站大壩進(jìn)行加固.原大壩的橫斷面是梯形ABCD,如圖所示,已知迎水面AB的長(zhǎng)為20米,∠B=60°,背水面DC的長(zhǎng)度為20米,加固后大壩的橫斷面為梯形ABED.若CE的長(zhǎng)為5米.
(1)已知需加固的大壩長(zhǎng)為100米,求需要填方多少立方米;
(2)求新大壩背水面DE的坡度.(計(jì)算結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ACB中,∠C=90°,AC=3,BC=4,O是BC的中點(diǎn),到點(diǎn)O的距離等于BC的所有點(diǎn)組成的圖形記為G,圖形G與AB交于點(diǎn)D.
(1)補(bǔ)全圖形并求線段AD的長(zhǎng);
(2)點(diǎn)E是線段AC上的一點(diǎn),當(dāng)點(diǎn)E在什么位置時(shí),直線ED與 圖形G有且只有一個(gè)交點(diǎn)?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD中,∠B=60°,AB=3cm,過(guò)點(diǎn)A作∠EAF=60°,分別交DC,BC的延長(zhǎng)線于點(diǎn)E,F,連接EF.
(1)如圖1,當(dāng)CE=CF時(shí),判斷△AEF的形狀,并說(shuō)明理由;
(2)若△AEF是直角三角形,求CE,CF的長(zhǎng)度;
(3)當(dāng)CE,CF的長(zhǎng)度發(fā)生變化時(shí),△CEF的面積是否會(huì)發(fā)生變化,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD的外接圓為⊙O,AD是⊙O的直徑,過(guò)點(diǎn)B作⊙O的切線,交DA的延長(zhǎng)線于點(diǎn)E,連接BD,且∠E=∠DBC.
(1)求證:DB平分∠ADC;
(2)若CD=9,tan∠ABE=,求⊙O的半徑.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com