20、如圖,一個直角三角形紙片的頂點A在∠MON的邊OM上移動,移動過程中始終保持AB⊥ON于點B,AC⊥OM于點A.∠MON的角平分線OP分別交AB、AC于D、E兩點.
(1)點A在移動的過程中,線段AD和AE有怎樣的數(shù)量關系,并說明理由.
(2)點A在移動的過程中,若射線ON上始終存在一點F與點A關于OP所在的直線對稱,判斷并說明以A、D、F、E為頂點的四邊形是怎樣特殊的四邊形?
(3)若∠MON=45°,猜想線段AC、AD、OC之間有怎樣的數(shù)量關系,只寫出結果即可.不用證明.
分析:(1)由AB⊥ON,AC⊥OM,根據(jù)兩銳角互余,易證得∠AED=∠ADE,然后根據(jù)等角對等邊的性質(zhì),即可得AD=AE;
(2)連接DF、EF,由點F與點A關于直線OP對稱,E、D在OP上,可證得AE=FE,AD=FD,又由AD=AE,根據(jù)由四條邊都相等的四邊形是菱形,即可得四邊形ADFE是菱形;
(3)首先過點E作EK⊥OC于K,AC⊥OM,∠MON的角平分線是OP,即可得AE=EK=AD,又由∠MON=45°,根據(jù)等腰直角三角形的性質(zhì),易得OA=AC=OK,,則可證得OC=AC+AD.
解答:解:(1)AE=AD.
理由如下:
∵AB⊥ON,AC⊥OM,
∴∠AED=90°-∠MOP,∠ADE=∠ODB=90°-∠PON,
而∠MOP=∠NOP,
∴∠AED=∠ADE.
∴AD=AE.

(2)菱形.
理由:連接DF、EF,
∵點F與點A關于直線OP對稱,E、D在OP上,
∴AE=FE,AD=FD.
由(1)得AE=AD,
∴AE=FE=AD=FD.
∴四邊形ADFE是菱形;

(3)OC=AC+AD.
理由:過點E作EK⊥OC于K,
∵AC⊥OM,∠MON的角平分線是OP,
∴AE=EK=AD,OA=OK,
∵∠MON=45°,
∴∠ACO=∠AOC=45°,
∴OA=AC,∠KEC=∠KCE,
∴EK=CK,
∴CK=AE,
∴OC=OK+KC=OA+AE=AC+AD.
點評:此題考查了垂直的定義,菱形的判定,等腰三角形與等腰直角三角形的性質(zhì),以及角平分線的性質(zhì)等知識.此題綜合性較強,難度適中,解題的關鍵是注意數(shù)形結合思想的應用,注意輔助線的作法.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,一個直角三角形紙板,其兩條直角邊長分別為6cm和8cm,小明以紙板的斜邊為旋轉軸旋轉這個三角形紙板形成如圖所示的旋轉體.請你幫小明推算出這個旋轉體的全面積.(π取3.14)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、如圖,一個直角三角形紙片,剪去直角后,得到一個四邊形,則∠1+∠2=
270
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,一個直角三角形的三邊長均為正整數(shù),已知它的一條直角邊的長恰是1997,那么另一條直角邊的長為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,一個直角三角形的三邊長均為正整數(shù),已知它的一條直角邊的長恰是3,那么另一條直角邊的長是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖是一個直角三角形的紙片,將直角沿EF折疊,使C點落在AB邊上,并且使∠EC′A=∠A,那么∠C′FE的度數(shù)是( 。
A、50°B、45°C、55°D、70°第7題圖

查看答案和解析>>

同步練習冊答案