【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,其對稱軸為x=﹣1,且過點(diǎn)(﹣3,0).下列說法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是拋物線上兩點(diǎn),則y1>y2.
其中說法正確的是( 。
A. ①② B. ②③ C. ①②④ D. ②③④
【答案】C
【解析】試題分析:根據(jù)圖象得出a>0,b=2a>0,c<0,即可判斷①②;把x=2代入拋物線的解析式即可判斷③,求出點(diǎn)(﹣5,y1)關(guān)于對稱軸的對稱點(diǎn)的坐標(biāo)是(3,y1),根據(jù)當(dāng)x>﹣1時,y隨x的增大而增大即可判斷④.
解:∵二次函數(shù)的圖象的開口向上,
∴a>0,
∵二次函數(shù)的圖象y軸的交點(diǎn)在y軸的負(fù)半軸上,
∴c<0,
∵二次函數(shù)圖象的對稱軸是直線x=﹣1,
∴﹣=﹣1,
∴b=2a>0,
∴abc<0,∴①正確;
2a﹣b=2a﹣2a=0,∴②正確;
∵二次函數(shù)y=ax2+bx+c圖象的一部分,其對稱軸為x=﹣1,且過點(diǎn)(﹣3,0).
∴與x軸的另一個交點(diǎn)的坐標(biāo)是(1,0),
∴把x=2代入y=ax2+bx+c得:y=4a+2b+c>0,∴③錯誤;
∵二次函數(shù)y=ax2+bx+c圖象的對稱軸為x=﹣1,
∴點(diǎn)(﹣5,y1)關(guān)于對稱軸的對稱點(diǎn)的坐標(biāo)是(3,y1),
根據(jù)當(dāng)x>﹣1時,y隨x的增大而增大,
∵<3,
∴y2<y1,∴④正確;
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】P為正方形ABCD內(nèi)一點(diǎn),且AP=2,將△APB繞點(diǎn)A按逆時針方向旋轉(zhuǎn)90°得到△AP′D.
(1)作出旋轉(zhuǎn)后的圖形;
(2)試求△APP′的周長和面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列條件中,不能確定四邊形ABCD為平行四邊形的是( 。
A. ∠A=∠C,∠B=∠D B. ∠A=∠B=∠C=90°
C. ∠A+∠B=180°,∠B+∠C=180° D. ∠A+∠B=180°,∠C+∠D=180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若代數(shù)式2x2-5x與代數(shù)式x2-6的值相等,則x的值是( )
A. -2或3B. 2或3C. -1或6D. 1或-6.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCO的邊OA、OC在坐標(biāo)軸上,點(diǎn)B坐標(biāo)為(6,6),將正方形ABCO繞點(diǎn)C逆時針旋轉(zhuǎn)角度α(0°<α<90°),得到正方形CDEF,ED交線段AB于點(diǎn)G,ED的延長線交線段OA于點(diǎn)H,連CH、CG.
(1)求證:△CBG≌△CDG;
(2)求∠HCG的度數(shù);并判斷線段HG、OH、BG之間的數(shù)量關(guān)系,說明理由;
(3)連結(jié)BD、DA、AE、EB得到四邊形AEBD,在旋轉(zhuǎn)過程中,四邊形AEBD能否為矩形?如果能,請求出點(diǎn)H的坐標(biāo);如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC和△AˊBˊCˊ關(guān)于點(diǎn)O對稱,下列結(jié)論不正確的是( )
A. AO=AˊO
B. AB∥AˊBˊ
C. CO=BO
D. ∠BAC=∠BˊAˊCˊ
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com