【題目】二次函數(shù)的圖像與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C.
(1)求A、B、C點(diǎn)的坐標(biāo);
(2)求△ABC的面積.
【答案】(1)A(2,0)、B(2,0)或A(2,0)、B(2,0);C點(diǎn)的坐標(biāo)為(0,2);(2) S△ABC=4.
【解析】
(1)令y=0,解關(guān)于x的一元二次方程,即可得出點(diǎn)A、B的坐標(biāo),令x=0求出y值,由此即可得出點(diǎn)C的坐標(biāo);
(2)利用兩點(diǎn)間的距離公式可得出AB的長度,結(jié)合OC=2,再根據(jù)三角形的面積公式即可得出結(jié)論.
(1)令y=0,則x2﹣2=0,解得:x1=﹣2,x2=2,∴A(﹣2,0)、B(2,0)或A(2,0)、B(﹣2,0);
令x=0,得y=﹣2,∴C點(diǎn)的坐標(biāo)為(0,﹣2).
(2)∵A(﹣2,0)、B(2,0)或A(2,0)、B(﹣2,0),且C(0,﹣2),∴AB=4,OC=2.
S△ABCABOC4×2=4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,科技小組準(zhǔn)備用材料圍建一個(gè)面積為60m2的矩形科技園ABCD,其中一邊AB靠墻,墻長為12m,設(shè)AD的長為m,DC的長為m。
(1)求與之間的函數(shù)關(guān)系式;
(2)根據(jù)實(shí)際情況,對(duì)于(1)式中的函數(shù)自變量能否取值為4m,若能,求出的值,若不能,請(qǐng)說明理由;
(3)若圍成矩形科技園ABCD的三邊材料總長不超過26m,材料AD和DC的長都是整米數(shù),求出滿足條件的所有圍建方案。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班數(shù)學(xué)興趣小組經(jīng)過市場調(diào)查,整理出某種商品在第天的售價(jià)與銷量的相關(guān)信息如下表:
觀察表格:根據(jù)表格解答下列問題:
0 | 1 | 2 | |
1 | |||
-3 | -3 |
(1)__________._____________.___________.
(2)在下圖的直角坐標(biāo)系中畫出函數(shù)的圖象,并根據(jù)圖象,直接寫出當(dāng)取什么實(shí)數(shù)時(shí),不等式成立;
(3)該圖象與軸兩交點(diǎn)從左到右依次分別為、,與軸交點(diǎn)為,求過這三個(gè)點(diǎn)的外接圓的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,對(duì)角線AC的中點(diǎn)為O,點(diǎn)G,H在對(duì)角線AC上,AG=CH,直線GH繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)α角,與邊AB、CD分別相交于點(diǎn)E、F(點(diǎn)E不與點(diǎn)A、B重合).
(1)求證:四邊形EHFG是平行四邊形;
(2)若∠α=90°,AB=9,AD=3,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,學(xué)校準(zhǔn)備在教學(xué)樓后面搭建一個(gè)簡易矩形自行車車棚,一邊利用教學(xué)樓的后墻(可利用的墻長為19m),另外三邊利用學(xué)校現(xiàn)有總長38m的鐵欄圍成.
(1)若圍成的面積為180m,試求出自行車車棚的長和寬;
(2)能圍成的面積為200m自行車車棚嗎?如果能,請(qǐng)你給出設(shè)計(jì)方案;如果不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一名在校大學(xué)生利用“互聯(lián)網(wǎng)+”自主創(chuàng)業(yè),銷售一種產(chǎn)品,這種產(chǎn)品的成本價(jià)10元/件,已知銷售價(jià)不低于成本價(jià),且物價(jià)部門規(guī)定這種產(chǎn)品的銷售價(jià)不高于16元/件,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量(件與銷售價(jià)(元/件)之間的函數(shù)關(guān)系如圖所示.
(1)求與之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(2)求每天的銷售利潤W(元與銷售價(jià)(元/件)之間的函數(shù)關(guān)系式,并求出每件銷售價(jià)為多少元時(shí),每天的銷售利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=﹣x+m分別交x軸,y軸于A,B兩點(diǎn),已知點(diǎn)C(2,0).
(1)當(dāng)直線AB經(jīng)過點(diǎn)C時(shí),點(diǎn)O到直線AB的距離是 ;
(2)設(shè)點(diǎn)P為線段OB的中點(diǎn),連結(jié)PA,PC,若∠CPA=∠ABO,則m的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)與x軸交于點(diǎn)B和點(diǎn)A(-1,0),與y軸交于點(diǎn)C,與一次函數(shù)交于點(diǎn)A和點(diǎn)D.
1.求出的值;
2.若直線AD上方的拋物線存在點(diǎn)E,可使得△EAD面積最大,求點(diǎn)E的坐標(biāo);
3.點(diǎn)F為線段AD上的一個(gè)動(dòng)點(diǎn),點(diǎn)F到(2)中的點(diǎn)E的距離與到y軸的距離之和記為d,求d的最小值及此時(shí)點(diǎn)F的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com