【題目】如圖,隧道的截面由拋物線和長(zhǎng)方形OABC構(gòu)成,長(zhǎng)方形的長(zhǎng)OA是12m,寬OC是4m.按照?qǐng)D中所示的平面直角坐標(biāo)系,拋物線可以用y=﹣x2+bx+c表示.在拋物線型拱璧上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過(guò)8m.那么兩排燈的水平距離最小是( )
A.2mB.4mC.mD.m
【答案】D
【解析】
根據(jù)長(zhǎng)方形的長(zhǎng)OA是12m,寬OC是4m,可得頂點(diǎn)的橫坐標(biāo)和點(diǎn)C的坐標(biāo),即可求出拋物線解析式,再把y=8代入解析式即可得結(jié)論.
根據(jù)題意,得
OA=12,OC=4.
所以拋物線的頂點(diǎn)橫坐標(biāo)為6,
即﹣==6,∴b=2.
∵C(0,4),∴c=4,
所以拋物線解析式為:
y=﹣x2+2x+4
=﹣(x﹣6)2+10
當(dāng)y=8時(shí),
8=﹣(x﹣6)2+10,
解得:x1=6+2,x2=6﹣2.
則x1﹣x2=4.
所以兩排燈的水平距離最小是4.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】同時(shí)拋擲兩枚質(zhì)地均勻的正四面體骰子,骰子各個(gè)面的點(diǎn)數(shù)分別是1至4的整數(shù),把這兩枚骰子向下的面的點(diǎn)數(shù)記為(a,b),其中第一枚骰子的點(diǎn)數(shù)記為a,第二枚骰子的點(diǎn)數(shù)記為b.
(1)用列舉法或樹狀圖法求(a,b)的結(jié)果有多少種?
(2)求方程x2+bx+a=0有實(shí)數(shù)解的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線的圖象過(guò)點(diǎn).
(1)求拋物線的解析式;
(2)在拋物線的對(duì)稱軸上是否存在一點(diǎn)P,使得△PAC的周長(zhǎng)最小,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo)及△PAC的周長(zhǎng);若不存在,請(qǐng)說(shuō)明理由;
(3)在(2)的條件下,在x軸上方的拋物線上是否存在點(diǎn)M(不與C點(diǎn)重合),使得?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=k1x+b與雙曲線y=交于點(diǎn)A(1,4),點(diǎn)B(3,m).
(1)求k1與k2的值;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校七年級(jí)開展征文活動(dòng),征文主題只能從“愛國(guó)”“敬業(yè)”“誠(chéng)信”“友善”四個(gè)主題選擇一個(gè),七年級(jí)每名學(xué)生按要求都上交了一份征文,學(xué)校為了解選擇各種征文主題的學(xué)生人數(shù),隨機(jī)抽取了部分征文進(jìn)行調(diào)查,根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.
(1)求共抽取了多少名學(xué)生的征文;
(2)將上面的條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)在扇形統(tǒng)計(jì)圖中,“愛國(guó)”主題所對(duì)應(yīng)的圓心角是多少;
(4)如果該校七年級(jí)共有名學(xué)生,請(qǐng)估計(jì)該校選擇以“友善”為主題的七年級(jí)學(xué)生有多少名.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,以AB為直徑的圓O交BC于點(diǎn)D,交AC于點(diǎn)E,過(guò)點(diǎn)D作DF⊥AC于點(diǎn)F,交AB的延長(zhǎng)線于點(diǎn)G.
(1)求證:DF是⊙O的切線;
(2)已知BD=,CF=2,求DF和BG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD的上方作等邊三角形ADE,連接BE,CE.
(1)求證:△ABE≌△DCE;
(2)連接AC,設(shè)AC與BE交于點(diǎn)F,求∠BFC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示:在平面直角坐標(biāo)系中,△OCB的外接圓與y軸交于A(0,),∠OCB=60°,∠COB=45°,則OC= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在直角坐標(biāo)系中,直線l與x、y軸分別交于點(diǎn)A(4,0)、B(0,)兩點(diǎn),∠BAO的角平分線交y軸于點(diǎn)D. 點(diǎn)C為直線l上一點(diǎn),以AC為直徑的⊙G經(jīng)過(guò)點(diǎn)D,且與x軸交于另一點(diǎn)E.
(1)求證:y軸是⊙G的切線;
(2)求出⊙G的半徑r,并直接寫出點(diǎn)C的坐標(biāo);
(3)如圖2,若點(diǎn)F為⊙G上的一點(diǎn),連接AF,且滿足∠FEA=45°,請(qǐng)求出EF的長(zhǎng)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com