【題目】已知P(﹣1,2),則點P所在的象限為( )
A.第一象限B.第二象限C.第三象限D.第四象限
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面的證明.
如圖,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:
∵∠1=∠2(已知)
且∠1=∠CGD(_______)
∴∠2=∠CGD(等量代換)
∴CE∥BF(_______)
∴∠_____=∠BFD(_______)
又∵∠B=∠C(已知)
∴∠BFD=∠B(_______)
∴AB∥CD(_______)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,H是△ABC的高AD,BE的交點,且DH=DC,則下列結(jié)論:①BD=AD;②BC=AC;③BH=AC;④CE=CD中正確的有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為保護環(huán)境,我市公交公司計劃購買A型和B型兩種環(huán)保節(jié)能公交車共10輛.若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元.
(1)求購買A型和B型公交車每輛各需多少萬元?
(2)預(yù)計在某線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用不超過1200萬元,且確保這10輛公交車在該線路的年均載客總和不少于680萬人次,則該公司有哪幾種購車方案?
(3)在(2)的條件下,哪種購車方案總費用最少?最少總費用是多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,點A、B、C的坐標(biāo)分別為(﹣1,3)、(﹣4,1)、(﹣2,1),將△ABC沿一確定方向平移得到△A1B1C1,點B的對應(yīng)點B1的坐標(biāo)是(1,2),則點A1,C1的坐標(biāo)分別是 ( 。
A. A1(4,4),C1(3,2) B. A1(3,3),C1(2,1)
C. A1(4,3),C1(2,3) D. A1(3,4),C1(2,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC,AD平分∠BAC交BC于點D,BC的中點為M,ME∥AD,交BA的延長線于點E,交AC于點F.
(1)求證:AE=AF;
(2)求證:BE=(AB+AC).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一種圓環(huán)(如圖),它的外圓直徑是8厘米,環(huán)寬1厘米.
①如果把這樣的2個圓環(huán)扣在一起并拉緊(如圖2),長度為___________厘米;
②如果用x個這樣的圓環(huán)相扣并拉緊,長度為y厘米,則y與x之間的關(guān)系式是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,E是BD上的一點,∠BAE=∠BCE,∠AED=∠CED,點G是BC、AE延長線的交點,AG與CD相交于點F.
(1)求證:四邊形ABCD是正方形;
(2)當(dāng)AE=2EF時,判斷FG與EF有何數(shù)量關(guān)系?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課外閱讀是提高學(xué)生素養(yǎng)的重要途徑,亞光初中為了了解學(xué)校學(xué)生的閱讀情況,組織調(diào)查組對全校三個年級共1500名學(xué)生進行了抽樣調(diào)查,抽取的樣本容量為300.已知該校有初一學(xué)生600名,初二學(xué)生500名,初三學(xué)生400名.
(1)為使調(diào)查的結(jié)果更加準(zhǔn)確地反映全校的總體情況,應(yīng)分別在初一年級隨機抽取人;在初二年級隨機抽取人;在初三年級隨機抽取人.(請直接填空)
(2)調(diào)查組對本校學(xué)生課外閱讀量的統(tǒng)計結(jié)果分別用扇形統(tǒng)計圖和頻數(shù)分布直方圖表示如下請根據(jù)上統(tǒng)計圖,計算樣本中各類閱讀量的人數(shù),并補全頻數(shù)分布直方圖.
(3)根據(jù)(2)的調(diào)查結(jié)果,從該校中隨機抽取一名學(xué)生,他最大可能的閱讀量是多少本?為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com