試題分析:(1)根據(jù)“直角三角形斜邊上的中線等于斜邊的一半”可知DF=BF,根據(jù)∠DFE=2∠DCF,∠BFE=2∠BCF,得到∠EFD+∠EFB=2∠DCB=90°,DF⊥BF;
(2)延長DF交BC于點G,先證明△DEF≌△GCF,得到DE=CG,DF=FG,根據(jù)AD=DE,AB=BC,得到BD=BG又因為∠ABC=90°,所以DF=CF且DF⊥BF;
(3)延長DF交BA于點H,先證明△DEF≌△HBF,得到DE=BH,DF=FH,根據(jù)旋轉(zhuǎn)條件可以△ADH為直角三角形,由△ABC和△ADE是等腰直角三角形,AC=
,可以求出AB的值,進而可以根據(jù)勾股定理可以求出DH,再求出DF,由DF=BF,求出得CF的值.
試題解析:(1)∵∠ACB=∠ADE=90°,點F為BE中點,∴DF=
BE,CF=
BE. ∴DF=CF.
∵△ABC和△ADE是等腰直角三角形,∴∠ABC=45°.
∵BF=DF,∴∠DBF=∠BDF.
∵∠DFE=∠ABE+∠BDF,∴∠DFE=2∠DBF.
同理得:∠CFE=2∠CBF,
∴∠EFD+∠EFC=2∠DBF+2∠CBF=2∠ABC=90°.
∴DF=CF,且DF⊥CF.
(2)(1)中的結(jié)論仍然成立.證明如下:
如圖,此時點D落在AC上,延長DF交BC于點G.
∵∠ADE=∠ACB=90°,∴DE∥BC.∴∠DEF=∠GBF,∠EDF=∠BGF.
∵F為BE中點,∴EF=BF.∴△DEF≌△GBF.∴DE=GB,DF=GF.
∵AD=DE,∴AD=GB.
∵AC=BC,∴AC-AD="BC-GB." ∴DC=GC.
∵∠ACB=90°,∴△DCG是等腰直角三角形.
∵DF=GF,∴DF=CF,DF⊥CF.
(3)如圖,延長DF交BA于點H,
∵△ABC和△ADE是等腰直角三角形,∴AC=BC,AD=DE.
∴∠AED=∠ABC=45°.
∵由旋轉(zhuǎn)可以得出,∠CAE=∠BAD=90°,
∵AE∥BC,∴∠AEB=∠CBE. ∴∠DEF=∠HBF.
∵F是BE的中點,∴EF="BF." ∴△DEF≌△HBF. ∴ED=HB.
∵AC=
,在Rt△ABC中,由勾股定理,得AB=4.
∵AD=1,∴ED=BH=1.∴AH=3.
在Rt△HAD中,由勾股定理,得DH=
,
∴DF=
,∴CF=
.
∴線段CF的長為
.