【題目】隨著智能手機(jī)的普及率越來越高以及移動支付的快捷高效性,中國移動支付在世界處于領(lǐng)先水平.為了解人們平時最喜歡用哪種移動支付方式,因此在某步行街對行人進(jìn)行隨機(jī)抽樣調(diào)查,以下是根據(jù)調(diào)查結(jié)果分別整理的不完整的統(tǒng)計(jì)表和統(tǒng)計(jì)圖.

移動支付方式

支付寶

微信

其他

人數(shù)/

   

200

75

請你根據(jù)上述統(tǒng)計(jì)表和統(tǒng)計(jì)圖提供的信息.完成下列問題:

1)在此次調(diào)查中,使用支付寶支付的人數(shù);

2)求表示微信支付的扇形所對的圓心角度數(shù);

3)某天該步行街人流量為10萬人,其中30%的人購物并選擇移動支付,請你依據(jù)此次調(diào)查獲得的信息估計(jì)一下當(dāng)天使用微信支付的人數(shù).

【答案】1225;(2)表示微信支付的扇形所對的圓心角度數(shù)是144°;(3)當(dāng)天使用微信支付的有1.2萬人.

【解析】

1)根據(jù)其他的百分比和人數(shù)可以求得本次調(diào)查的人數(shù),從而可以求得使用支付寶支付的人數(shù);

2)根據(jù)表格中的數(shù)據(jù)可以求得表示微信支付的扇形所對的圓心角度數(shù);

3)根據(jù)表格中的數(shù)據(jù)可以求得使用微信支付的人數(shù).

1)本次調(diào)查的人數(shù)為:75÷15%500

用支付寶支付的人數(shù)為:50020075225,

故答案為225;

2)表示微信支付的扇形所對的圓心角度數(shù)是:360°×144°,

即表示微信支付的扇形所對的圓心角度數(shù)是144°;

310×30%×1.2(萬人),

答:當(dāng)天使用微信支付的有1.2萬人.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019418日,臺灣省花蓮善線發(fā)生里氏級地震,救援隊(duì)救援時,利用生命探測儀在某建筑物廢墟下方探測到點(diǎn)處有生命跡象,已知廢墟一側(cè)地面上兩探測點(diǎn)相距6米,探測線與地面的夾角分別為,如圖所示,試確定生命所在點(diǎn)的深度(結(jié)果精確到米,參考數(shù)據(jù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD是菱形,BCx軸,點(diǎn)B的坐標(biāo)是(1,),坐標(biāo)原點(diǎn)OAB的中點(diǎn).動圓⊙P的半徑是,圓心在x軸上移動,若⊙P在運(yùn)動過程中只與菱形ABCD的一邊相切,則點(diǎn)P的橫坐標(biāo)m 的取值范圍是_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于一、三象限內(nèi)的,兩點(diǎn),與軸交于點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,

1)求該反比例函數(shù)和一次函數(shù)的解析式;

2)直接寫出關(guān)于的不等式的解集;

3)連接,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△ABC中,ABAC20,tanB,點(diǎn)DBC邊上的動點(diǎn)(D不與點(diǎn)B,C重合).以D為頂點(diǎn)作∠ADE∠B,射線DEAC邊于點(diǎn)E,過點(diǎn)AAF⊥AD交射線DE于點(diǎn)F,連接CF

1)求證:△ABD∽△DCE;

2)當(dāng)DE∥AB時(如圖2),求AE的長;

3)點(diǎn)DBC邊上運(yùn)動的過程中,是否存在某個位置,使得DFCF?若存在,求出此時BD的長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知拋物線過點(diǎn)

1)求拋物線的解析式及其頂點(diǎn)C的坐標(biāo);

2)設(shè)點(diǎn)Dx軸上一點(diǎn),當(dāng)時,求點(diǎn)D的坐標(biāo);

3)如圖2.拋物線與y軸交于點(diǎn)E,點(diǎn)P是該拋物線上位于第二象限的點(diǎn),線段PABE于點(diǎn)M,交y軸于點(diǎn)N,的面積分別為,求的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是菱形,AB=2,且∠ABC=ABE=60°M為對角線BD(不含B點(diǎn))上任意一點(diǎn),將BM繞點(diǎn)B逆時針旋轉(zhuǎn)60°得到BN,連接EN、AMCM,則AM+BM+CM的最小值為_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸交于點(diǎn),與反比例函數(shù)第一象限內(nèi)的圖象交于點(diǎn),連接,若

1)求直線的表達(dá)式和反比例函數(shù)的表達(dá)式;

2)若直線軸的交點(diǎn)為,求的面積.

查看答案和解析>>

同步練習(xí)冊答案