【題目】已知:b是最小的正整數(shù),且a、b滿足(c52+|a+b|=0

1)請求出ab、c的值;

2a、b、c所對應的點分別為AB、C,點P為一動點,其對應的數(shù)為x,點P02之間運動時(即0≤x≤2時),請化簡式子:|x+1|-|x-1|+2|x+5|(請寫出化簡過程)
3)在(1)(2)的條件下,點A、BC開始在數(shù)軸上運動,若點A以每秒1個單位長度的速度向左運動,同時,點B和點C分別以每秒2個單位長度和5個單位長度的速度向右運動,假設(shè)t秒鐘過后,若點B與點C之間的距離表示為BC,點A與點B之間的距離表示為AB.請問:BC-AB的值是否隨著時間t的變化而改變?若變化,請說明理由;若不變,請求其值.

【答案】1-1;1;5;(24x+102x+12.;(3)不變,理由見解析.

【解析】

1)根據(jù)b是最小的正整數(shù),即可確定b的值,然后根據(jù)非負數(shù)的性質(zhì),幾個非負數(shù)的和是0,則每個數(shù)是0,即可求得a,b,c的值;

2)根據(jù)x的范圍,確定x+1,x-3,5-x的符號,然后根據(jù)絕對值的意義即可化簡;

3)先求出BC=3t+4AB=3t+2,從而得出BC-AB=2

1)∵b是最小的正整數(shù),∴b=1

根據(jù)題意得:c-5=0a+b=0,

a=-1,b=1,c=5

故答案是:-11;5;

2)當0≤x≤1時,x+10,x-1≤0,x+50,

則:|x+1|-|x-1|+2|x+5|

=x+1-1-x+2x+5

=x+1-1+x+2x+10

=4x+10

1x≤2時,x+10x-10,x+50

|x+1|-|x-1|+2|x+5|=x+1-x-1+2x+5

=x+1-x+1+2x+10

=2x+12

3)不變.理由如下:

t秒時,點A對應的數(shù)為-1-t,點B對應的數(shù)為2t+1,點C對應的數(shù)為5t+5

BC=5t+5-2t+1=3t+4,AB=2t+1--1-t=3t+2,

BC-AB=3t+4-3t+2=2

BC-AB的不隨著時間t的變化而改變.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將一條數(shù)軸在原點O和點B處各折一下,得到一條折線數(shù)軸。圖中點A表示-10,點B表示10,點C表示18,我們稱點A和點C在數(shù)軸上相距28個長度單位,動點P從點A出發(fā),以2單位/秒的速度沿著折線數(shù)軸的正方向運動,從點O運動到點B期間速度變?yōu)樵瓉淼囊话耄罅⒖袒謴驮;同時,動點Q從點C出發(fā),以1單位/秒的速度沿著數(shù)軸的負方向運動,從點B運動到點O期間速度變?yōu)樵瓉淼膬杀,之后也立刻恢復原速,設(shè)運動的時間為t秒,問:

1)動點P從點A運動至點C需要________秒;

2P、Q兩點相遇時,求出相遇點M所對應的數(shù)是多少?

3)求當t為何值時,P、O兩點在數(shù)軸上相距的長度與Q、B兩點在數(shù)軸上相距的長度相等.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知O為直線AB上一點,射線OD、OC、OE位于直線AB上方,ODOE的左側(cè),∠AOC120°,∠DOEα

1)如圖1,α70°,當OD平分∠AOC時,求∠EOB的度數(shù).

2)如圖2,若∠DOC2AOD,且α80°,求∠EOB的度數(shù)(用含α的代數(shù)式表示);

3)若α90°,點F在射線OB上,若射線OF繞點O順時針旋轉(zhuǎn)n°(0n180),∠FOA2AOD,OH平分∠EOC,當∠FOH=∠AOC時,求n的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖O為坐標原點,四邊形ABCD是菱形,A(4,4),B點在第二象限,AB5,ABy軸交于點F,對角線ACy軸于點E

(1)直接寫出B、C點的坐標;

(2)動點PC點出發(fā)以每秒1個單位的速度沿折線段CDA運動,設(shè)運動時間為t秒,請用含t的代數(shù)式表示EDP的面積;

(3)(2)的條件下,是否存在一點P,使APE沿其一邊翻折構(gòu)成的四邊形是菱形?若存在,請直接寫出當t為多少秒時存在符合條件的點P;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一個長方形操場的四角都設(shè)計一塊半徑相同的四分之一圓形的花壇,若圓形的半徑為r米,廣場的長為a米,寬為b米.

(1)請列式表示操場空地的面積;

(2)若休閑廣場的長為 50米,寬為20米,圓形花壇的半徑為 3米,求操場空地的面積.(π取 3.14,計算結(jié)果保留 0.1)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在Rt△ABC中,∠ACB=90°,AC=2,BC=4.點D是線段BC上的一個動點.點D與點B、C不重合,過點D作DE⊥BC交AB于點E,將△ABC沿著直線DE翻折,使點B落在直線BC上的F點.

(1)設(shè)∠BAC=α(如圖①),求∠AEF的大;(用含α的代數(shù)式表示)

(2)當點F與點C重合時(如圖②),求線段DE的長度;

(3)設(shè)BD=x,△EDF與△ABC重疊部分的面積為S,試求出S與x之間函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖 所示, 20 m 的籬笆(細線部分),兩面靠墻圍成矩形的苗圃.

(1)設(shè)矩形的一邊長為x(m),面積為y(m 2 ),求y關(guān)于x的函數(shù)表達式;

(2)求當x8、9、10、11、12y的值,并觀察這幾種情況下,哪種情況面積最大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,△ABC中,AB=2,BC=4,DBC邊上一點,BD=1.

(1)求證:△ABD△CBA;

(2)在原圖上作DE∥ABAC與點E,請直接寫出另一個與△ABD相似的三角形,并求出DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果關(guān)于的分式方程有負分數(shù)解,且關(guān)于的不等式組的解集為,那么符合條件的所有整數(shù)的積是( )

A. B. 0 C. 3 D. 9

查看答案和解析>>

同步練習冊答案