【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)D的坐標(biāo)是(﹣3,1),點(diǎn)A的坐標(biāo)是(4,3).
(1)點(diǎn)B和點(diǎn)C的坐標(biāo)分別是、 .
(2)將△ABC平移后使點(diǎn)C與點(diǎn)D重合,點(diǎn)A、B與點(diǎn)E、F重合,畫出△DEF.
并直接寫出E、F的坐標(biāo).
(3)若AB上的點(diǎn)M坐標(biāo)為(x,y),則平移后的對(duì)應(yīng)點(diǎn)M′的坐標(biāo)為 .
【答案】
(1)(3,1);(1,2)
(2)
解:如圖所示,△DEF即為所求.
點(diǎn)E坐標(biāo)為(0,2),點(diǎn)F坐標(biāo)為(﹣1,0).
(3)(x﹣4,y﹣1)
【解析】解:(1)B(3,1);C(1,2).
故答案為(3,1),(1,2).
⑶根據(jù)平移的規(guī)律向左平移4個(gè)單位,向下平移1個(gè)單位,
∴點(diǎn)M(x,y)平移后點(diǎn)坐標(biāo)為M′(x﹣4,y﹣1).
故答案為(x﹣4,y﹣1).
(1)觀察圖象可以直接寫出點(diǎn)B、點(diǎn)C坐標(biāo).(2)把△ABC向左平移4個(gè)單位,向下平移1個(gè)單位即可,根據(jù)圖象寫出點(diǎn)E、F坐標(biāo).(3)根據(jù)平移規(guī)律左減右加,上加下減的規(guī)律解決問題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=cm,∠BAC=120°,點(diǎn)P在BC上從C向B運(yùn)動(dòng),點(diǎn)Q在AB、AC上沿B→A→C運(yùn)動(dòng),點(diǎn)P、Q分別從點(diǎn)C、B同時(shí)出發(fā),速度均為1cm/s,當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí)兩點(diǎn)同時(shí)停止運(yùn)動(dòng),則當(dāng)運(yùn)動(dòng)時(shí)間t=_____s時(shí),△PAQ為直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上有三個(gè)點(diǎn)A、B、C,完成系列問題:
(1)將點(diǎn)B向右移動(dòng)六個(gè)單位長(zhǎng)度到點(diǎn)D,在數(shù)軸上表示出點(diǎn)D.
(2)在數(shù)軸上找到點(diǎn)E,使點(diǎn)E到A、C兩點(diǎn)的距離相等.并在數(shù)軸上標(biāo)出點(diǎn)E表示的數(shù).
(3)在數(shù)軸上有一點(diǎn)F,滿足點(diǎn)F到點(diǎn)A與點(diǎn)F到點(diǎn)C的距離和是9,則點(diǎn)F表示的數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)為6的正方形ABCD中,E是邊CD的中點(diǎn),將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG.
(1)求證:△ABG≌△AFG;(2)求BG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛貨車從A地運(yùn)貨到240km的B地,卸貨后返回A地,如圖中實(shí)線是貨車離A地的路程y(km)關(guān)于出發(fā)后的時(shí)間x(h)之間的函數(shù)圖象.貨車出發(fā)時(shí),正有一個(gè)自行車騎行團(tuán)在AB之間,距A地40km處,以每小時(shí)20km的速度奔向B地.
(1)貨車去B地的速度是 ,卸貨用了 小時(shí),返回的速度是 ;
(2)求出自行車騎行團(tuán)距A地的路程y(km)關(guān)于x的函數(shù)關(guān)系式,并在此坐標(biāo)系中畫出它的圖象;
(3)求自行車騎行團(tuán)與貨車迎面相遇,是貨車出發(fā)后幾小時(shí)后,自行車騎行團(tuán)還有多遠(yuǎn)到達(dá)B地.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AC為對(duì)角線,E為AB上一點(diǎn),過點(diǎn)E作 EF∥AD,與AC、DC 分別交于點(diǎn)G,F(xiàn),H為CG的中點(diǎn),連結(jié)DE、 EH、DH、FH.下列結(jié)論:①EG=DF;②△EHF≌△DHC;③∠AEH+∠ADH=180°;④若,則.其中結(jié)論正確的有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,已知點(diǎn)E(3,2)在雙曲線y=(x>0)上。過動(dòng)點(diǎn)P(t,0)作x軸的垂線分別與該雙曲線和直線y=x交于A.、B兩點(diǎn),以線段AB為對(duì)角線作正方形ADBC,當(dāng)正方形ADBC的邊(不包括正方形頂點(diǎn))經(jīng)過點(diǎn)E時(shí),則t的值為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,△ACD沿AD折疊,使得點(diǎn)C落在斜邊AB上的點(diǎn)E處.
(1)求證:△BDE∽△BAC;
(2)已知AC=6,BC=8,求線段AD的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=4,BC=3,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),使點(diǎn)C落在線段AB上的點(diǎn)E處,點(diǎn)B落在點(diǎn)D處,則B、D兩點(diǎn)間的距離為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com