【題目】如圖,二次函數(shù)yx24x3的圖象與x軸交于A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右側(cè))y軸交于點(diǎn)C,拋物線的對(duì)稱(chēng)軸與x軸交于點(diǎn)D.

(1)求點(diǎn)A,點(diǎn)B和點(diǎn)D的坐標(biāo);

(2)y軸上是否存在一點(diǎn)P,使PBC為等腰三角形?若存在請(qǐng)求出點(diǎn)P的坐標(biāo);

(3)若動(dòng)點(diǎn)M從點(diǎn)A出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿AB向點(diǎn)B運(yùn)動(dòng),同時(shí)另一個(gè)動(dòng)點(diǎn)N從點(diǎn)D出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度在拋物線的對(duì)稱(chēng)軸上運(yùn)動(dòng),當(dāng)點(diǎn)M到達(dá)點(diǎn)B時(shí),點(diǎn)M,N同時(shí)停止運(yùn)動(dòng),問(wèn)點(diǎn)M,N運(yùn)動(dòng)到何處時(shí),MNB的面積最大,試求出最大面積.

    (備用圖)

【答案】見(jiàn)解析

【解析】試題分析(1)已知拋物線的一般式,令y=0,可得關(guān)于x的方程,解方程可得拋物線與x軸交點(diǎn)的橫坐標(biāo),從而得到A、B兩點(diǎn)坐標(biāo),通過(guò)配方可得到拋物線的對(duì)稱(chēng)軸,從而可得點(diǎn)D的坐標(biāo);

(2)先求出BC的長(zhǎng),然后分情況進(jìn)行討論即可得;

(3)設(shè)點(diǎn)M運(yùn)動(dòng)的時(shí)間為ts,用含t的式子先表示出BMDN的長(zhǎng),然后利用三角形的面積公式表示出△MNB的面積,再根據(jù)二次函數(shù)的性質(zhì)即可得.

試題解析(1)當(dāng)y=0時(shí),x2-4x+3=0.

解得x1=1,x2=3,

∵點(diǎn)B在點(diǎn)A的右側(cè),∴點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)B的坐標(biāo)為(3,0),

∵y=x2-4x+3=(x-2)2-1,

∴點(diǎn)D的坐標(biāo)為(2,0);

(2)存在一點(diǎn)P,使△PBC為等腰三角形,

當(dāng)x=0加法,y=x2-4x+3=3,∴點(diǎn)C的坐標(biāo)為(0,3),

BC=,

點(diǎn)P中y軸上,當(dāng)△PBC為等腰三角形時(shí)分三種情況討論,點(diǎn)P位置如圖,

當(dāng)CP=CB時(shí),PC3

OPOCPC33 或OP=PC-OC=33.

P1(0,33),P2(0,33)

當(dāng)BP=BC時(shí),OP=OC=3,

∴P3(0,-3);

③當(dāng)PB=PC時(shí),

∵OC=OB=3,

此時(shí)點(diǎn)P與點(diǎn)O重合.

∴P4(0,0),

綜上所述,當(dāng)點(diǎn)P的坐標(biāo)為(0,33)或(033)或(0,-3)或(0,0)時(shí),PBC為等腰三角形;

(3)設(shè)點(diǎn)M運(yùn)動(dòng)的時(shí)間為ts,

∵AB=2,∴BM=2-t,DN=2t,

SMNB==-t2+2t=-(t-1)2+1,

∴當(dāng)t=1時(shí),△MNB的面積最大,最大面積為1,

此時(shí)M(2,0),N(2,2)或(2,-2),

∴當(dāng)點(diǎn)M運(yùn)動(dòng)到(2,0),點(diǎn)N運(yùn)動(dòng)到(2,2)或(2,-2)時(shí),△MNB的面積最大,最大面積為1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,OP平分∠AOB,PAOAPBOB,垂足分別為AB.下列結(jié)論中:①PAPB;②△AOP≌△BOP;③OAOB;④PO平分∠APB.其中成立的有________(填寫(xiě)正確的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一邊是另一邊的倍的三角形叫做智慧三角形,這兩邊中較長(zhǎng)邊稱(chēng)為智慧邊,這兩邊的 夾角叫做智慧角.

(1)在 Rt△ABC 中,∠ACB=90°,若∠A 為智慧角,則∠B 的度數(shù)為 ;

(2)如圖①,在△ABC 中,∠A=45°,∠B=30°,求證:△ABC 是智慧三角形;

(3)如圖②,△ABC 是智慧三角形,BC 為智慧邊,∠B 為智慧角,A(3,0),點(diǎn) B,C 在函數(shù) y x>0)的圖像上,點(diǎn) C 在點(diǎn) B 的上方,且點(diǎn) B 的縱坐標(biāo)為.當(dāng)△ABC是直角三角形時(shí),求 k 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:E是∠AOB的平分線上一點(diǎn),EC⊥OB,ED⊥OA,C、D是垂足,連接CD,且交OE于點(diǎn)F.

(1)求證:OE是CD的垂直平分線.

(2)若∠AOB=60,請(qǐng)你探究OE,EF之間有什么數(shù)量關(guān)系?并證明你的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】高速公路養(yǎng)護(hù)小組乘車(chē)沿東西向公路巡視維護(hù),如果約定向東為正,向西為負(fù),當(dāng)天的行駛記錄如下(單位:千米):+10,-9+8,-12,-37,-6-7,6,+4

1)養(yǎng)護(hù)小組最后到達(dá)的地方在出發(fā)點(diǎn)的哪個(gè)方向?距出發(fā)點(diǎn)多遠(yuǎn)?

2)若汽車(chē)行駛每千米耗油量為04升,求這一天養(yǎng)護(hù)小組的汽車(chē)共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示是二次函數(shù)y=ax2+bx+c(a≠0)圖象的一部分,圖象過(guò)點(diǎn)A(3,0),二次函數(shù)圖象對(duì)稱(chēng)軸為直線x=1,給出四個(gè)結(jié)論:①b2>4ac;bc<0;2a+b=0;④當(dāng)y>0時(shí),0<x<3.其中正確的結(jié)論有(  )

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,給出下列四個(gè)條件,AB=DE,BC=EFB=E,C=F,從中任選三個(gè)條件能使ABCDEF的共有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,平面直角坐標(biāo)系中,拋物線y=ax2+bx+3x軸的兩個(gè)交點(diǎn)分別為A(﹣3,0),B(1,0),與y軸的交點(diǎn)為D,對(duì)稱(chēng)軸與拋物線交于點(diǎn)C,與x軸負(fù)半軸交于點(diǎn)H.

(1)求拋物線的表達(dá)式;

(2)點(diǎn)E,F(xiàn)分別是拋物線對(duì)稱(chēng)軸CH上的兩個(gè)動(dòng)點(diǎn)(點(diǎn)E在點(diǎn)F上方),且EF=1,求使四邊形BDEF的周長(zhǎng)最小時(shí)的點(diǎn)E,F(xiàn)坐標(biāo)及最小值;

(3)如圖2,點(diǎn)P為對(duì)稱(chēng)軸左側(cè),x軸上方的拋物線上的點(diǎn),PQ⊥AC于點(diǎn)Q,是否存在這樣的點(diǎn)P使△PCQ△ACH相似?若存在請(qǐng)求出點(diǎn)P的坐標(biāo),若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩車(chē)從A地開(kāi)往B地,全程800km;所行的路程與時(shí)間的函數(shù)圖像如圖所示,下列問(wèn)題:①乙車(chē)比甲車(chē)早出發(fā)2h;②甲車(chē)追上乙車(chē)時(shí)行駛了300km;③乙車(chē)的速度小于甲車(chē)速度;④甲車(chē)跑完全程比乙車(chē)跑完全程少用3h;以上正確的序號(hào)是_______.

查看答案和解析>>

同步練習(xí)冊(cè)答案