已知雙曲線與直線相交于A、B兩點(diǎn).第一象限上的點(diǎn)Mmn)(在A點(diǎn)左側(cè))是雙曲線上的動(dòng)點(diǎn).過(guò)點(diǎn)BBDy軸交x軸于點(diǎn)D.過(guò)N(0,-n)作NCx軸交雙曲線于點(diǎn)E,交BD于點(diǎn)C.若BCD的中點(diǎn),四邊形OBCE的面積為4,則直線CM的解析式為                  

 

【答案】

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2012屆江蘇泰興市黃橋初級(jí)中學(xué)八年級(jí)下期中數(shù)學(xué)試卷(帶解析) 題型:解答題

已知雙曲線  與直線  相交于A、B兩點(diǎn).第一象限上的點(diǎn)M(m,n)(在A點(diǎn)左側(cè))是雙曲線 上的動(dòng)點(diǎn).過(guò)點(diǎn)B作BD∥y軸交x軸于點(diǎn)D.過(guò)N(0,-n)作NC∥x軸交雙曲線于點(diǎn)E,交BD于點(diǎn)C.
【小題1】若點(diǎn)D坐標(biāo)是(-8,0),求A、B兩點(diǎn)坐標(biāo)及k的值.
【小題2】若B是CD的中點(diǎn),四邊形OBCE的面積為4,求直線CM的解析式.
【小題3】在(2)的條件下,若P為x軸上一點(diǎn),是否存在△OMP為等腰三角形?若存在,寫出P點(diǎn)坐標(biāo);若不存在,說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年初中畢業(yè)升學(xué)考試(江蘇南通卷)數(shù)學(xué)(帶解析) 題型:解答題

已知雙曲線與直線相交于A、B兩點(diǎn).第一象限上的點(diǎn)M(m,n)(在A點(diǎn)左側(cè))是雙曲線上的動(dòng)點(diǎn).過(guò)點(diǎn)B作BD∥y軸交x軸于點(diǎn)D.過(guò)N(0,-n)作NC∥x軸交雙曲線于點(diǎn)E,交BD于點(diǎn)C.
(1)若點(diǎn)D坐標(biāo)是(-8,0),求A、B兩點(diǎn)坐標(biāo)及k的值.
(2)若B是CD的中點(diǎn),四邊形OBCE的面積為4,求直線CM的解析式.
(3)設(shè)直線AM、BM分別與y軸相交于P、Q兩點(diǎn),且MA=pMP,MB=qMQ,求p-q的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年初中數(shù)學(xué)單元提優(yōu)測(cè)試卷-反比例函數(shù)與一次函數(shù)的圖像(帶解析) 題型:解答題

已知雙曲線與直線相交于A、B兩點(diǎn).第一象限上的點(diǎn)M(m,n)(在A點(diǎn)左側(cè))是雙曲線上的動(dòng)點(diǎn).過(guò)點(diǎn)B作BD∥y軸交x軸于點(diǎn)D.過(guò)N(0,﹣n)作NC∥x軸交雙曲線于點(diǎn)E,交BD于點(diǎn)C.

(1)若點(diǎn)D坐標(biāo)是(﹣8,0),求A、B兩點(diǎn)坐標(biāo)及k的值.
(2)若B是CD的中點(diǎn),四邊形OBCE的面積為4,求直線CM的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年江蘇省鎮(zhèn)江市丹徒區(qū)中考適應(yīng)性考試數(shù)學(xué)試卷(解析版) 題型:填空題

已知雙曲線與直線y=x-相交于點(diǎn)P(a,b),則   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年初中畢業(yè)升學(xué)考試(江蘇南通卷)數(shù)學(xué)(解析版) 題型:解答題

已知雙曲線與直線相交于A、B兩點(diǎn).第一象限上的點(diǎn)M(m,n)(在A點(diǎn)左側(cè))是雙曲線上的動(dòng)點(diǎn).過(guò)點(diǎn)B作BD∥y軸交x軸于點(diǎn)D.過(guò)N(0,-n)作NC∥x軸交雙曲線于點(diǎn)E,交BD于點(diǎn)C.

(1)若點(diǎn)D坐標(biāo)是(-8,0),求A、B兩點(diǎn)坐標(biāo)及k的值.

(2)若B是CD的中點(diǎn),四邊形OBCE的面積為4,求直線CM的解析式.

(3)設(shè)直線AM、BM分別與y軸相交于P、Q兩點(diǎn),且MA=pMP,MB=qMQ,求p-q的值.

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案