【題目】某校甲、乙兩班分別有一男生和一女生共4名學(xué)生報(bào)名競選校園廣播播音員.
(1)若從甲、乙兩班報(bào)名的學(xué)生中分別隨機(jī)選1名學(xué)生,則所選的2名學(xué)生性別相同的概率是多少?
(2)若從報(bào)名的4名學(xué)生中隨機(jī)選2名,求這2名學(xué)生來自同一班級(jí)的概率.

【答案】
(1)解:根據(jù)題意畫圖如下:

共有4種情況,其中所選的2名學(xué)生性別相同的有2種,

則所選的2名學(xué)生性別相同的概率是 =


(2)解:將(1)、(2)兩班報(bào)名的學(xué)生分別記為甲1、甲2、乙1、乙2(注:1表示男生,2表示女生),樹狀圖如圖所示:

所以P2名學(xué)生來自同一班級(jí))= =


【解析】(1)根據(jù)甲、乙兩班分別有一男一女,列出樹狀圖,得出所有情況,再根據(jù)概率公式即可得出答案;(2)根據(jù)題意先畫出樹狀圖,得出所有情況數(shù),再根據(jù)概率公式即可得出答案.
【考點(diǎn)精析】本題主要考查了列表法與樹狀圖法的相關(guān)知識(shí)點(diǎn),需要掌握當(dāng)一次試驗(yàn)要設(shè)計(jì)三個(gè)或更多的因素時(shí),用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值:

(1)xx-1)+2xx+1)-(3x-1)(2x-5),其中x=2.

(2),其中=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,已知:,,,以斜邊AB的中點(diǎn)P為旋轉(zhuǎn)中心,把這個(gè)三角形按逆時(shí)針方向旋轉(zhuǎn)得到,則旋轉(zhuǎn)前后兩個(gè)直角三角形重疊部分的面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知O是直線AB上的一點(diǎn),∠COD是直角,OE平分∠BOC.

(1)如圖①,若∠AOC=30°,求∠DOE的度數(shù);

(2)在圖①中,若∠AOC,直接寫出∠DOE的度數(shù)(用含的代數(shù)式表示);

(3)將圖①中的∠DOC繞頂點(diǎn)O順時(shí)針旋轉(zhuǎn)至圖②的位置,探究∠AOC和∠DOE的度數(shù)之間的關(guān)系,寫出你的結(jié)論,并說明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于圓O,四邊形ABCO是平行四邊形,則∠ADC=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)C為AB上面半圓上一點(diǎn),點(diǎn)D為AB的下面半圓的中點(diǎn),連接CD與AB交于點(diǎn)E,延長BA至F,使EF=CF.
(1)求證:CF與⊙O相切;
(2)若DEDC=13,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一食堂需要購買盒子存放食物,盒子有A、B兩種型號(hào),單個(gè)盒子的容量和價(jià)格如表格所示.現(xiàn)有15升食物需要存放且要求每個(gè)盒子都要裝滿,由于A型號(hào)盒子正做促銷活動(dòng):購買三個(gè)及三個(gè)以上可一次性每個(gè)返還現(xiàn)金1.5元,則該食堂購買盒子所需的最少費(fèi)用是

型號(hào)

A

B

單個(gè)盒子容量(升)

2

3

單價(jià)(元)

5

6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若十位上的數(shù)字比個(gè)位上的數(shù)字、百位上的數(shù)字都大的三位數(shù)叫做中高數(shù),如796就是一個(gè)“中高數(shù)”.若一個(gè)三位數(shù)的十位上數(shù)字為7,且從4、5、6、8中隨機(jī)選取兩數(shù),與7組成“中高數(shù)”,那么組成“中高數(shù)”的概率是多少?(請用“畫樹狀圖”或“列表”等方法寫出分析過程

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在下列各圖中,點(diǎn)O為直線AB上一點(diǎn),∠AOC=60°,直角三角板的直角頂點(diǎn)放在點(diǎn)處.

(1)如圖1,三角板一邊OM在射線OB上,另一邊ON在直線AB的下方,則∠BOC的度數(shù)為   °,CON的度數(shù)為   °;

(2)如圖2,三角板一邊OM恰好在∠BOC的角平分線OE上,另一邊ON在直線AB的下方,此時(shí)∠BON的度數(shù)為   °;

(3)請從下列(A),(B)兩題中任選一題作答.

我選擇:   

A)在圖2中,延長線段NO得到射線OD,如圖3,則∠AOD的度數(shù)為   °;DOC與∠BON的數(shù)量關(guān)系是∠DOC   BON(填“>”、“=”“<”);

B)如圖4,MNAB,ON在∠AOC的內(nèi)部,若另一邊OM在直線AB的下方,則∠COM+AON的度數(shù)為   °;AOMCON的度數(shù)為   °.

查看答案和解析>>

同步練習(xí)冊答案