【題目】提出命題:如圖,在四邊形ABCD中,∠A=∠C∠ABC=∠ADC,求證:四邊形ABCD是平行四邊形.

小明提供了如下解答過程:

證明:連接BD.

∵∠1+∠3=180∠A∠2+∠4=180―∠C,∠A=∠C,

∴ ∠1+∠3=∠2+∠4.

∵∠ABC=∠ADC

∴∠1=∠4,∠2=∠3.

∴AB∥CDAD∥BC.

∴四邊形ABCD是平行四邊形(兩組對邊分別平行的四邊形是平行四邊形.

反思交流(1)請問小明的解法正確嗎?如果有錯,說明錯在何處,并給出正確的證明過程.

(2)用語言敘述上述命題:___________________________________________________.

運用探究(3)下列條件中,能確定四邊形ABCD是平行四邊形的是_____

A. ∠A∶∠B∶∠C∶∠D=1∶2∶3∶4 B. ∠A∶∠B∶∠C∶∠D=1∶3∶1∶3

C. ∠A∶∠B∶∠C∶∠D=2∶3∶3∶2 D. ∠A∶∠B∶∠C∶∠D=1∶1∶3∶3

【答案】 (1)答案見解析;(2)兩組對角分別相等的四邊形是平行四邊形; (3)B

【解析】試題分析:(1)利用四邊形的內角和和已知條件中的對角相等得到鄰角互補,從而判定兩組對邊平行,進而證得結論;(2)兩組對角分別相等的四邊形是平行四邊形;(3)由(1)即可得出結論.

解:(1)小明的解法不正確,錯在推出∠1+∠3=∠2+∠4后,由∠ABC=∠ADC,不能直接推出∠1=∠4,∠2=∠3.

正確證明:因為∠A+∠ABC+∠C+∠ADC=360°,∠A=∠C,∠ABC=∠ADC,所以2∠A+

2∠ABC=360°.所以∠A+∠ABC=180°.所以AD∥BC.同理∠A+∠ADC=180°.所以AB∥CD.所以四邊形ABCD是平行四邊形.

(2)兩組對角分別相等的四邊形是平行四邊形

(3)∵兩組對角分別相等的四邊形是平行四邊形,

∴B正確.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABBC,AE平分∠BADBC于點E,AEDE,1+2=90°,M,N分別是BA,CD延長線上的點,∠EAM和∠EDN的平分線交于點F.下列結論:①ABCD;②∠AEB+ADC=180°;DE平分∠ADC;④∠F為定值其中結論正確的有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)若,則

(2)如圖,CBOA,B=A=108°,E、FCB上,且滿足∠FOC=AOC,OE平分∠BOF,若平行移動AC,當∠OCA= 時?梢允埂OEB=OCA。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖的平面直角坐標系中,已知△ABC三個頂點的坐標分別是A(4,3),B(3,1),C(1,2).

(1)將三角形ABC三個頂點的橫坐標都減去6,分別得到A1、B1、C1,依次連接A1,B1,C1,各點,請寫出A1、B1、C1的坐標并畫出△A1B1C1,并判斷所得三角形A1B1C1與三角形ABC的大小、形狀和位置有什么關系?

(2)將三角形ABC三個頂點的縱坐標都減去5,分別得到A2、B2、C2,依次連接A2,B2,C2,各點,請寫出A2、B2、C2的坐標并畫出△A2B2C2,并判斷所得三角形A2B2C2與三角形ABC的大小、形狀和位置有什么關系?

(3)求△A2B2C2的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB=4,BAD的平分線與BC的延長線交于點E,與DC交于點F,且點F為邊DC的中點,DGAE,垂足為G,若DG=1,則AE的邊長為( ).

A.2 B.4 C.4 D.8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個底面直徑為5 cm,高為18 cm的圓柱形瓶內裝滿水,再將瓶內的水倒入一個底面直徑為6cm,高為10cm的圓柱形玻璃中,能否完全裝下?若裝不下,那么瓶內水面還有多高?若未能裝滿,求杯內水面離杯口的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對非負實數(shù)x“四舍五入到個位的值記為<x>,即當n為非負整數(shù)時,若,則<x>n,如<0.46>=0,<3.67>=4。給出下列關于<x>的結論:

①<1.493>=1;

②<2x>=2<x>

,則實數(shù)x的取值范圍是;

x≥0m為非負整數(shù)時,有

。

其中,正確的結論有  (填寫所有正確的序號)。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點O為坐標原點,點在第一象限,過點Ax軸作垂線,垂足為點B,連接OA,,點MO出發(fā),沿y軸的正半軸以每秒2個單位長度的速度運動,點N從點B出發(fā)以每秒3個單位長度的速度向x軸負方向運動,點M與點N同時出發(fā),設點M的運動時間為t秒,連接AM,AN,MN

a的值;

時,

請?zhí)骄?/span>,之間的數(shù)量關系,并說明理由;

試判斷四邊形AMON的面積是否變化?若不變化,請求出其值;若變化,請說明理由.

時,請求出t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為2的正方形ABCD中,G是AD延長線上的一點,且DG=AD,動點M從A點出發(fā),以每秒1個單位的速度沿著A→C→G的路線向G點勻速運動(M不與A,G重合),設運動時間為t秒,連接BM并延長AG于N.

(1)是否存在點M,使△ABM為等腰三角形?若存在,分析點M的位置;若不存在,請說明理由;
(2)當點N在AD邊上時,若BN⊥HN,NH交∠CDG的平分線于H,求證:BN=HN;
(3)過點M分別作AB,AD的垂線,垂足分別為E,F(xiàn),矩形AEMF與△ACG重疊部分的面積為S,求S的最大值.

查看答案和解析>>

同步練習冊答案