某商場(chǎng)將每件進(jìn)價(jià)為80元的某種商品原來(lái)按每件100元售出,一天可售出100件,后來(lái)經(jīng)過(guò)市場(chǎng)調(diào)查,發(fā)現(xiàn)這種商品單價(jià)每降低1元,其銷量可增加10件.
(1)求商場(chǎng)經(jīng)營(yíng)該商品原來(lái)一天可獲利潤(rùn)多少元?
(2)設(shè)后來(lái)該商品每件降價(jià)x元,商場(chǎng)每天可獲利潤(rùn)y元.
①若商場(chǎng)經(jīng)營(yíng)該商品一天要獲利潤(rùn)2210元,則每件商品應(yīng)降價(jià)多少元?
②求y與x之間的函數(shù)關(guān)系式,并根據(jù)關(guān)系式求出該商品如何定價(jià)可使商場(chǎng)所獲利潤(rùn)最多?最多為多少?
分析:(1)根據(jù)進(jìn)價(jià)為80元,售價(jià)為100元,銷售量為100件,求出利潤(rùn);
(2)可根據(jù)利潤(rùn)y=降價(jià)后的單件利潤(rùn)×降價(jià)后銷售的商品的件數(shù)列出函數(shù)關(guān)系式,
①令y=2210,列方程求出x的值;
②運(yùn)用配方法求二次函數(shù)的最大值即可.
解答:解:(1)若商店經(jīng)營(yíng)該商品不降價(jià),則一天可獲利潤(rùn)為:
100×(100-80)=2000(元);

(2)設(shè)后來(lái)該商品每件降價(jià)x元,依題意,得
y=(100-80-x)(100+10x)=-10x2+100x+2000,
①令y=2210,
-10x2+100x+2000=2210,
化簡(jiǎn)得x2-10x+21=0.
解得x1=3,x2=7,
即每件商品應(yīng)降價(jià)3元或7元;
②y=-10x2+100x+2000=-10(x-5)2+2250,
∵-10<0,
∴當(dāng)x=5時(shí),y有最大值2250(元),
此時(shí)商品定價(jià)為95元,
答:商品定價(jià)為95元時(shí)可使商場(chǎng)所獲利潤(rùn)最多,最多為2250元.
點(diǎn)評(píng):本題考查了二次函數(shù)的應(yīng)用,解答本題的關(guān)鍵是根據(jù)利潤(rùn)=總銷量×(售價(jià)-進(jìn)價(jià))列數(shù)函數(shù)關(guān)系式,注意掌握運(yùn)用配方法求二次函數(shù)的最大值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

25、某商場(chǎng)將每件進(jìn)價(jià)為80元的某種商品原來(lái)按每件100元出售,每天可售出100件,為了擴(kuò)大銷售,增加盈利,盡快減少庫(kù)存,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施,經(jīng)過(guò)市場(chǎng)調(diào)查,發(fā)現(xiàn)這種商品售價(jià)每降低1元,商場(chǎng)銷量平均每天可增加10件.
(1)假設(shè)銷售單價(jià)降低x元,那么銷售每件這種商品所獲得的利潤(rùn)是
(20-x)
元;這種商品每天的銷售量是
(100+10x)
件(用含x的代數(shù)式表示);
(2)若商場(chǎng)經(jīng)營(yíng)該商品一天要獲利潤(rùn)2160元,則每件商品應(yīng)降價(jià)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某商場(chǎng)將每件進(jìn)價(jià)為60元的某種商品原來(lái)按每件100元出售,一天可售出100件.后來(lái)經(jīng)過(guò)市場(chǎng)調(diào)查,發(fā)現(xiàn)這種商品單價(jià)每降低1元,其銷量可增加20件.
(1)求商場(chǎng)經(jīng)營(yíng)該商品原來(lái)一天可獲利潤(rùn)多少元?
(2)設(shè)后來(lái)該商品每件降價(jià)x元,商場(chǎng)一天可獲利潤(rùn)y元.
①若商場(chǎng)經(jīng)營(yíng)該商品一天要獲利潤(rùn)7000元,則每件商品應(yīng)降價(jià)多少元?
②求出y與x之間的函數(shù)關(guān)系式,并通過(guò)畫(huà)該函數(shù)圖象的草圖,觀察其圖象的變化趨勢(shì),結(jié)合題意寫(xiě)出當(dāng)x取何值時(shí),商場(chǎng)獲利潤(rùn)不少于7000元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某商場(chǎng)將每件進(jìn)價(jià)為200元的某種商品原來(lái)按每件250元出售,一月可售出100件,后來(lái)經(jīng)過(guò)市場(chǎng)調(diào)查,發(fā)現(xiàn)這種商品單價(jià)每增加10元,其銷量可減少5件.
(1)求銷售量y(件)與售價(jià)x(元)之間的函數(shù)關(guān)系;
(2)問(wèn)售價(jià)定為多少時(shí),可以獲得最大利潤(rùn),最大利潤(rùn)是多少?
(3)某部門(mén)規(guī)定該商品售價(jià)不得高于300元,該商場(chǎng)能否到達(dá)每月獲得利潤(rùn)不低于7000元的目的.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某商場(chǎng)將每件進(jìn)價(jià)為80元的某種商品原來(lái)按每件100元出售,一天可售出100件,經(jīng)調(diào)查這種商品每降低1元,其銷量可增加10件.
①求商場(chǎng)原來(lái)一天可獲利潤(rùn)多少元?
②設(shè)后來(lái)該商品每件降價(jià)x元,一天可獲利潤(rùn)y元.
1)若經(jīng)營(yíng)該商品一天要獲利2160元,則每件商品應(yīng)降價(jià)多少元?
2)當(dāng)售價(jià)為多少時(shí),獲利最大并求最大值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某商場(chǎng)將每件進(jìn)價(jià)為60元的商品按100元售出,每天可售20件,為了迎接“國(guó)慶節(jié)”,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施,盡快減少庫(kù)存,通過(guò)調(diào)查發(fā)現(xiàn),該商品若單價(jià)每降低4元,其銷量就增加8件.
(1)求商場(chǎng)經(jīng)營(yíng)該商品原來(lái)一天可獲利潤(rùn)多少元;
(2)若商場(chǎng)經(jīng)營(yíng)該商品一天要獲利1200元,則每件商品應(yīng)降價(jià)多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案