若我們把邊長(zhǎng)與面積都是整數(shù)的三角形稱作整數(shù)三角形,那么邊長(zhǎng)為3,4,5的三角形由于其面積為6因此為整數(shù)三角形.小明在研究時(shí)發(fā)現(xiàn),直角三角形中存在大量的整數(shù)三角形,但他沒有發(fā)現(xiàn)銳角三角形中的整數(shù)三角形以及鈍角三角形中的整數(shù)三角形.你認(rèn)為存在嗎?若你認(rèn)為存在的話,請(qǐng)分別畫出一個(gè)銳角整數(shù)三角形和一個(gè)鈍角整數(shù)三角形(畫出計(jì)算面積所需的高,在圖上標(biāo)出相關(guān)數(shù)據(jù).且其中至少有一個(gè)為不等邊三角形);若你認(rèn)為不存在,請(qǐng)簡(jiǎn)單的說(shuō)一下理由.
分析:根據(jù)勾股定理計(jì)算即可.
解答:解:存在,
如邊長(zhǎng)為5,5,6(邊長(zhǎng)為6的邊為底,高為4);
5,5,8(邊長(zhǎng)為8的邊為底,高為3);
10,10,12(邊長(zhǎng)為12的邊為底,高為8);
15,13,4(邊長(zhǎng)為14的邊為底,高為12);
點(diǎn)評(píng):此題主要考查了勾股定理的應(yīng)用,根據(jù)已知熟練利用勾股定理求出勾股數(shù)是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知菱形紙片ABCD的邊長(zhǎng)為8,∠A=60°,E為AB邊上的點(diǎn),過(guò)點(diǎn)E作EF∥BD交AD于點(diǎn)F.將菱形先沿EF按圖1所示方式折疊,點(diǎn)A落在點(diǎn)A'處,過(guò)點(diǎn)A'作GH∥BD分別交線段BC、DC于點(diǎn)G、H,再將菱形沿GH按圖1所示方式折疊,點(diǎn)C落在點(diǎn)C'處,C'G與C'H分別交A'E與A'F于點(diǎn)M、N.若點(diǎn)C'在△A'EF的內(nèi)部或邊上,此時(shí)我們稱四邊形A'MC'N(即圖中陰影部分)為“重疊四邊形”.
精英家教網(wǎng)
(1)若把菱形紙片ABCD放在菱形網(wǎng)格中(圖中每個(gè)小三角形都是邊長(zhǎng)為1的等邊三角形),點(diǎn)A、B、C、D、E恰好落在網(wǎng)格圖中的格點(diǎn)上.如圖2所示,請(qǐng)直接寫出此時(shí)重疊四邊形A'MC'N的面積;
(2)實(shí)驗(yàn)探究:設(shè)AE的長(zhǎng)為m,若重疊四邊形A'MC'N存在.試用含m的代數(shù)式表示重疊四邊形A'MC'N的面積,并寫出m的取值范圍(直接寫出結(jié)果,備用圖供實(shí)驗(yàn),探究使用).
解:(1)重疊四邊形A'MC'N的面積為
 

(2)用含m的代數(shù)式表示重疊四邊形A'MC'N的面積為
 
;m的取值范圍為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年北京房山區(qū)九年級(jí)學(xué)題統(tǒng)一練習(xí)(二) 題型:解答題

已知菱形紙片ABCD的邊長(zhǎng)為,∠A=60°,E為邊上的點(diǎn),過(guò)點(diǎn)E作EF∥BD交AD于點(diǎn)F.將菱形先沿EF按圖1所示方式折疊,點(diǎn)A落在點(diǎn)處,過(guò)點(diǎn)作GH∥BD分別交線段BC、DC于點(diǎn)G、H,再將菱形沿GH按圖1所示方式折疊,點(diǎn)C落在點(diǎn)處, H分別交于點(diǎn)M、N.若點(diǎn)在△EF的內(nèi)部或邊上,此時(shí)我們稱四邊形(即圖中陰影部分)為“重疊四邊形”.

 

1.若把菱形紙片ABCD放在菱形網(wǎng)格中(圖中每個(gè)小三角形都是邊長(zhǎng)為1的等邊三角形),點(diǎn)A、B、C、D、E恰好落在網(wǎng)格圖中的格點(diǎn)上.如圖2所示,請(qǐng)直接寫出此時(shí)重疊四邊形的面積;

2.實(shí)驗(yàn)探究:設(shè)AE的長(zhǎng)為,若重疊四邊形存在.試用含的代數(shù)式表示重疊四邊形的面積,并寫出的取值范圍(直接寫出結(jié)果,備用圖供實(shí)驗(yàn),探究使用).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

若我們把邊長(zhǎng)與面積都是整數(shù)的三角形稱作整數(shù)三角形,那么邊長(zhǎng)為3,4,5的三角形由于其面積為6因此為整數(shù)三角形.小明在研究時(shí)發(fā)現(xiàn),直角三角形中存在大量的整數(shù)三角形,但他沒有發(fā)現(xiàn)銳角三角形中的整數(shù)三角形以及鈍角三角形中的整數(shù)三角形.你認(rèn)為存在嗎?若你認(rèn)為存在的話,請(qǐng)分別畫出一個(gè)銳角整數(shù)三角形和一個(gè)鈍角整數(shù)三角形(畫出計(jì)算面積所需的高,在圖上標(biāo)出相關(guān)數(shù)據(jù).且其中至少有一個(gè)為不等邊三角形);若你認(rèn)為不存在,請(qǐng)簡(jiǎn)單的說(shuō)一下理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年江蘇省宿遷市泗陽(yáng)縣實(shí)驗(yàn)初中中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

若我們把邊長(zhǎng)與面積都是整數(shù)的三角形稱作整數(shù)三角形,那么邊長(zhǎng)為3,4,5的三角形由于其面積為6因此為整數(shù)三角形.小明在研究時(shí)發(fā)現(xiàn),直角三角形中存在大量的整數(shù)三角形,但他沒有發(fā)現(xiàn)銳角三角形中的整數(shù)三角形以及鈍角三角形中的整數(shù)三角形.你認(rèn)為存在嗎?若你認(rèn)為存在的話,請(qǐng)分別畫出一個(gè)銳角整數(shù)三角形和一個(gè)鈍角整數(shù)三角形(畫出計(jì)算面積所需的高,在圖上標(biāo)出相關(guān)數(shù)據(jù).且其中至少有一個(gè)為不等邊三角形);若你認(rèn)為不存在,請(qǐng)簡(jiǎn)單的說(shuō)一下理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案