【題目】某工廠承接了一批紙箱加工任務,用如圖1所示的長方形和正方形紙板(長方形的寬與正方形的邊長相等)加工成如圖所示的豎式與橫式兩種無蓋的長方形紙箱.(加工時接縫材料不計)

若該廠購進正方形紙板1000張,長方形紙板2000張.問豎式紙盒,橫式紙盒各加工多少個,恰好能將購進的紙板全部用完;

該工廠某一天使用的材料清單上顯示,這天一共使用正方形紙板50張,長方形紙板a張,全部加工成上述兩種紙盒,且120<a<136,試求在這一天加工兩種紙盒時,a的所有可能值.

【答案】(1)加工豎式紙盒200個,加工橫式紙盒400個;(2)a為:125,130,135.

【解析】試題分析:(1)根據(jù)題目可以看出一個豎式紙盒需要正方形紙片1個,長方形紙片4個,一個橫式紙盒需要正方形紙片2個,長方形紙片3個,設加工豎式紙盒x個,加工橫式紙盒y個,列出方程組即可;(2)本題根據(jù)題意列出方程組,得出y與a的關系式,y=40﹣,∵y、a為正整數(shù),得出a的所有可能值.

試題解析:

(1) 設加工豎式紙盒x個,加工橫式紙盒y個,

依題意,得

解得:

答:加工豎式紙盒200個,加工橫式紙盒400個

(2)設加工豎式紙盒x個,加工橫式紙盒y個,

依題意得:

∴y=40﹣

∵y、a為正整數(shù),

∴a為5的倍數(shù),

∵120<a<136

∴滿足條件的a為:125,130,135.

當a=125時,x=20,y=15;

當a=130時,x=22,y=14;

當a=135時,x=24,y=13

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知OAOB,點O為垂足,OC是∠AOB內任意一條射線,OB,OD分別平分∠COD,∠BOE,下列結論:①∠COD=BOE;②∠COE=3BOD;③∠BOE=AOC;④∠AOC與∠BOD互余,其中正確的有______(只填寫正確結論的序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解學生平均每天課外閱讀的時間,隨機調查了該校部分學生一周內平均每天課外閱讀的時間(以分鐘為單位,并取整數(shù)),將有關數(shù)據(jù)統(tǒng)計整理并繪制成尚未完成的頻率分布表和頻數(shù)分布直方圖.請你根據(jù)圖表中所提供的信息,解答下列問題.
頻率分布表

組別

分組

頻數(shù)

頻率

1

15~25

7

0.14

2

25~35

a

0.24

3

35~45

20

0.40

4

45~55

6

b

5

55~65

5

0.10

注:這里的15~25表示大于等于15同時小于25.

(1)求被調查的學生人數(shù);
(2)直接寫出頻率分布表中的a和b的值,并補全頻數(shù)分布直方圖;
(3)若該校共有學生500名,則平均每天課外閱讀的時間不少于35分鐘的學生大約有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,BD平分∠ABC,BC的中垂線交BC于點E,交BD于點F,連接CF.若∠A60°,∠ACF42°,則∠ABC_____°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD內接于圓O,∠BAD=90°,AC為直徑,過點A作圓O的切線交CB的延長線于點E,過AC的三等分點F(靠近點C)作CE的平行線交AB于點G,連結CG.

(1)求證:AB=CD;
(2)求證:CD2=BEBC;
(3)當CG= ,BE= 時,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某電器超市銷售每臺進價分別為200,170元的A,B兩種型號的電風扇,表中是近兩周的銷售情況:

銷售時段

銷售數(shù)量

銷售收入

A種型號

B種型號

第一周

3

5

1800

第二周

4

10

3100

(進價、售價均保持不變,利潤=銷售收入-進貨成本)

(1)A,B兩種型號的電風扇的銷售單價.

(2)若超市準備用不多于5400元的金額再采購這兩種型號的電風扇共30,A種型號的電風扇最多能采購多少臺?

(3)(2)的條件下,超市銷售完這30臺電風扇能否實現(xiàn)利潤為1400元的目標?若能請給出相應的采購方案;若不能請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)已知4m=a,8n=b,用含a,b的式子表示下列代數(shù)式①求:22m+3n的值,

②求:24m6n的值;

2)已知2×8x×16=223,x的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知BE平分∠ABC,∠CBE=25°,∠BED=25°,∠C=30°,求∠ADE與∠BEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點E在正方形ABCD內,滿足∠AEB=90°,AE=6,BE=8,則陰影部分的面積是( )

A.48
B.60
C.76
D.80

查看答案和解析>>

同步練習冊答案