【題目】如圖,△ABC和△DBE均為等腰三角形,點A,D,E在同一直線上,連接CE

(1)如圖1,若∠BAC=∠BCA=∠BDE=∠BED=55°

①求證:AD=CE;

②求∠AEC的度數(shù).

(2)如圖2,若∠ABC=∠DBE=120°,BM△BDEDE邊上的高,CN為△ACEAE邊上的高,試證明:AE=

【答案】(1)①證明見解析②70°(2)

【解析】(1)關(guān)鍵全等三角形的判定方法,判斷出△BAD≌△CAE,即可判斷出BD=CE.

(2)①首先根據(jù)△ACB和△CE均為等腰三角形,可得AC=BC,CD=CE,∠ACB=∠DCE=90°,據(jù)此判斷出∠ACD=∠BCE;然后根據(jù)全等三角形的判定方法,判斷出△ACD≌△BCE,即可判斷出BE=AD,∠BEC=∠ADC,進而判斷出∠AEB的度數(shù)為90°即可;

解:(1)證明:∵∠ABD+∠DBC=∠CBE+∠DBC=55°,

∴∠ABD=∠CBE.

∵△ABC和△DBE均為以點B為腰上頂點的等腰三角形.

∴BA=BC,BD=BE 

∴△ABD≌△CBE.

∴AD=CE 

②:解:∵△ABD≌△CBE(已證)

∴∠BDA=∠BEC=180°-∠BDE

∵∠AEC=∠BEC-∠BED

∴∠AEC =180°-2∠BDE=70°

(2)同理可證:AD=CE,∠AEC=120° ,∴∠CEN=60°,

∵CN為△ACE中AE邊上的高,

∴∠ECN=30°,∵CN=a,

根據(jù)勾股定理:CE=

∴AD=CE=,

∵△DBE為等腰三角形, BM為△BDE中DE邊上的高

∴DE=2DM,

∵∠DBE=120°,∴∠BDM=30°,

∴根據(jù)勾股定理:DM=

∴DE=2DM=2 ,

∴AE=AD+DE=+2

“點睛”此題主要考查了全等三角形的判定方法和性質(zhì),等腰直角三角形的性質(zhì)和應(yīng)用,要熟練掌握,解答此題的關(guān)鍵是要明確:在判定三角形全等時,關(guān)鍵是選擇恰當?shù)呐卸l件.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】對于二次函數(shù),有下列說法:

①如果=2,則有最小值-1; ②如果當的增大而減小,則=1;

③如果將它的圖象向左平移3個單位后的函數(shù)的最小值是-9,則;

④如果當=1時的函數(shù)值與=2015時的函數(shù)值相等,則當=2016時的函數(shù)值為3.其中正確的說法是_____________.(把你認為正確的結(jié)論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,山坡AB的坡度i=1:,AB=10米,AE=15米.在高樓的頂端豎立一塊倒計時牌CD,在點B處測量計時牌的頂端C的仰角是45°,在點A處測量計時牌的底端D的仰角是60°,求這塊倒計時牌CD的高度.(測角器的高度忽略不計,結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.414,≈1.732)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】三角形ABC與三角形在平面直角坐標系中的位置如圖所示,三角形是由三角形ABC經(jīng)過平移得到的.

1)分別寫出點的坐標;

2)說明三角形是由三角形ABC經(jīng)過怎樣的平移得到的;

3)若點是三角形ABC內(nèi)的一點,則平移后點P在三角形內(nèi)的對應(yīng)點為P‘,寫出點P’的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,AE平分BAD,交BC于點E,BF平分ABC,交AD于點FAEBF交于點P,連接EFPD

1)求證:四邊形ABEF是菱形;

2)若AB=4,AD=6ABC=60°,求tanDPF的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】初三年(4)班要舉行一場畢業(yè)聯(lián)歡會,主持人同時轉(zhuǎn)動下圖中的兩個轉(zhuǎn)盤,由一名同學在轉(zhuǎn)動前來判斷兩個轉(zhuǎn)盤上指針所指的兩個數(shù)字之和是奇數(shù)還是偶數(shù),如果判斷錯誤,他就要為大家表演一個節(jié)目;如果判斷正確,他可以指派別人替自己表演節(jié)目.現(xiàn)在輪到小明來選擇,小明不想自己表演,于是他選擇了偶數(shù).

小明的選擇合理嗎?從概率的角度進行分析(要求用樹狀圖或列表方法求解)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠ACB=90°,D為邊AB的中點,EF分別為邊AC,BC上的點,且AE=ADBF=BD.若DE=2,DF=4,則AB的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,窗簾的褶皺是指按照窗戶的實際寬度將窗簾布料以一定比例加寬的做法,褶皺之后的窗簾更能彰顯其飄逸、靈動的效果.其中,窗寬度的1.5倍為平褶皺,窗寬度的2倍為波浪褶皺.如圖②,小莉房間的窗戶呈長方形,窗戶的寬度(AD)比高度(AB)的少0.5m,某種窗簾的價格為120/m2.如果以波浪褶皺的方式制作該種窗簾比以平褶皺的方式費用多180元,求小莉房間窗戶的寬度與高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在Rt△ABC,∠A=90°,AB=6,AC=8,點DBC的中點,DE⊥BC交AC于點E,點P為射線AB上一動點,點Q為邊AC上一動點,且∠PDQ=90°

(1)求ED、EC的長;

(2)若BP=2,求CQ的長;

(3)記線段PQ與線段DE的交點為點F,若PDF為等腰三角形,求BP的長.

查看答案和解析>>

同步練習冊答案