【題目】如圖,是等邊的外角內(nèi)部的一條射線,點(diǎn)關(guān)于的對(duì)稱點(diǎn)為,連接,,其中分別交射線于點(diǎn),

1)依題意補(bǔ)全圖形;

2)若,求的大。ㄓ煤的式子表示);

3)若,,求的長(zhǎng)度(用,的代數(shù)式表示).

【答案】1)答案見(jiàn)解析;(260°;(3PB=x+2y

【解析】

1)根據(jù)題目要求正確畫圖即可;

2)根據(jù)對(duì)稱得CNAD的垂直平分線,則CACD,根據(jù)等腰三角形的性質(zhì)和等邊三角形的性質(zhì)可得結(jié)論;

3)作輔助線,在PB上截取PF使PFPC,連接CF,先證明CPF是等邊三角形,再證明BFC≌△DPC,則BFPD2PE,然后根據(jù)PB=PF+BF可得結(jié)論.

解:(1)如圖:

2)∵點(diǎn)A與點(diǎn)D關(guān)于CN對(duì)稱,

CNAD的垂直平分線,

CA=CD,

,

∴∠ACD=2,

CA=CB=CD,∠ACB=60°,

∴∠BCD=ACB+ACD=60°+2α

∴∠BDC=DBC=180°-∠BCD=60°α;

3)在PB上截取PF使PF=PC,連接CF

設(shè),

CA=CD,∠ACD=2α,

∴∠CDA=CAD=90°α

∵∠BDC=60°α,

∴∠PDE=CDA-∠BDC=30°,

PD=2PE,

∵∠CPF=DPE=90°-∠PDE=60°,

∴△CPF是等邊三角形,

∴∠CPF=CFP=60°,

∴∠BFC=DPC=120°

∴在BFCDPC中,

∴△BFC≌△DPC,

BF=PD=2PE

PB=PF+BF=PC+2PE=x+2y

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1CA=CB,CD=CE,∠ACB=DCE

1)求證:BE=AD

2)當(dāng)α=90°時(shí),取AD,BE的中點(diǎn)分別為點(diǎn)P、Q,連接CP,CQPQ,如圖②,判斷CPQ的形狀,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y2x28x+m滿足以下條件:當(dāng)﹣2x<﹣1時(shí),它的圖象位于x軸的下方;當(dāng)6x7時(shí),它的圖象位于x軸的上方,則m的值為( 。

A. 8 B. 10 C. 42 D. 24

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某小學(xué)為每個(gè)班級(jí)配備了一種可以加熱的飲水機(jī),該飲水機(jī)的工作程序是:放滿水后,接通電源,則自動(dòng)開(kāi)始加熱,每分鐘水溫上升10℃,待加熱到100℃,飲水機(jī)自動(dòng)停止加熱,水溫開(kāi)始下降,水溫y(℃)和通電時(shí)間x(min)成反比例關(guān)系,直至水溫降至室溫,飲水機(jī)再次自動(dòng)加熱,重復(fù)上述過(guò)程.設(shè)某天水溫和室溫為20℃,接通電源后,水溫和時(shí)間的關(guān)系如下圖所示,回答下列問(wèn)題:

(1)分別求出當(dāng)0≤x≤88<x≤a時(shí),yx之間的關(guān)系式;

(2)求出圖中a的值;

(3)下表是該小學(xué)的作息時(shí)間,若同學(xué)們希望在上午第一節(jié)下課8:20時(shí)能喝到不超過(guò)40℃的開(kāi)水,已知第一節(jié)下課前無(wú)人接水,請(qǐng)直接寫出生活委員應(yīng)該在什么時(shí)間或時(shí)間段接通飲水機(jī)電源.(不可以用上課時(shí)間接通飲水機(jī)電源)

時(shí)間

節(jié)次

7:20

到校

7:45~8:20

第一節(jié)

8:30~9:05

第二節(jié)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知BE、C、F在同一條直線上,BECF,ABDE,則下列條件中,不能判斷ABC≌△DEF的是(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知A ,D,B,E在同一條直線上,且AD = BE, AC = DF,補(bǔ)充下列其中一個(gè)條件后,不一定能得到ABCDEF 的是(

A.BC = EFB.AC//DFC.C = FD.BAC = EDF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BDABC的角平分線,AEBDBD'延長(zhǎng)線于點(diǎn)E, ABC = 72°,C:∠ADB =23,求∠BAC 和∠DAE 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形ABCD中,AB12厘米,BC8厘米,CD14厘米,∠B=∠C,點(diǎn)E為線段AB的中點(diǎn).如果點(diǎn)P在線段BC上以3厘米秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CD上由C點(diǎn)向D點(diǎn)運(yùn)動(dòng).當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為_____厘米/秒時(shí),能夠使△BPE與以C、PQ三點(diǎn)所構(gòu)成的三角形全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠BAC=DAF=90°,ABAC,ADAF,點(diǎn)D,EBC邊上的兩點(diǎn),且∠DAE45°,連接EF,BF,則下列結(jié)論:①△AFB≌△ADC;②△ABD為等腰三角形;③∠ADC=120°;④BE2DC2=DE2,其中正確的有( )個(gè)

A.4B.3C.2D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案