【題目】小宇想測(cè)量位于池塘兩端的A、B兩點(diǎn)的距離.他沿著與直線AB平行的道路EF行走,當(dāng)行走到點(diǎn)C處,測(cè)得∠ACF=45°,再向前行走100米到點(diǎn)D處,測(cè)得∠BDF=60°.若直線AB與EF之間的距離為60米,求A、B兩點(diǎn)的距離.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市開(kāi)展一項(xiàng)自行車(chē)旅游活動(dòng),線路需經(jīng)A、B、C、D四地,如圖,其中A、B、C三地在同一直線上,D地在A地北偏東30°方向,在C地北偏西45°方向,C地在A地北偏東75°方向.且BC=CD=20km,問(wèn)沿上述線路從A地到D地的路程大約是多少?(最后結(jié)果保留整數(shù),參考數(shù)據(jù):sin15°≈0.25,cos15°≈0.97,tan15°≈0.27, )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中∠A=60°,BM⊥AC于點(diǎn)M,CN⊥AB于點(diǎn)N,P為BC邊的中點(diǎn),連接PM,PN,則下列結(jié)論:①PM=PN;② ;③△PMN為等邊三角形;④當(dāng)∠ABC=45°時(shí),BN= PC.其中正確的個(gè)數(shù)是( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC的三邊AB、BC、CA長(zhǎng)分別為40、50、60.其三條角平分線交于點(diǎn)O,則S△ABO:S△BCO:S△CAO= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖,圖象過(guò)點(diǎn)(﹣1,0),對(duì)稱軸為直線x=2,下列結(jié)論: ①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④當(dāng)x>﹣1時(shí),y的值隨x值的增大而增大.
其中正確的結(jié)論有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某工藝品廠生產(chǎn)一款工藝品、已知這款工藝品的生產(chǎn)成本為每件60元. 經(jīng)市場(chǎng)調(diào)研發(fā)現(xiàn):該款工藝品每天的銷(xiāo)售量y(件)與售價(jià)x(元)之間存在著如下表所示的一次函數(shù)關(guān)系.
售價(jià)x(元) | … | 70 | 90 | … |
銷(xiāo)售量y(件) | … | 3000 | 1000 | … |
(利潤(rùn)=(售價(jià)﹣成本價(jià))×銷(xiāo)售量)
(1)求銷(xiāo)售量y(件)與售價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)你認(rèn)為如何定價(jià)才能使工藝品廠每天獲得的利潤(rùn)為40000元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)軸上有A,B,C三個(gè)點(diǎn),分別表示有理數(shù)﹣24,﹣10,10,動(dòng)點(diǎn)P從A出發(fā),以每秒4個(gè)單位長(zhǎng)度的速度向終點(diǎn)C移動(dòng),設(shè)移動(dòng)時(shí)間為t秒.
(1)用含t的代數(shù)式表示點(diǎn)P與A的距離:PA= ;點(diǎn)P對(duì)應(yīng)的數(shù)是 ;
(2)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)C移動(dòng),若P、Q同時(shí)出發(fā),求:當(dāng)點(diǎn)P運(yùn)動(dòng)多少秒時(shí),點(diǎn)P和點(diǎn)Q間的距離為8個(gè)單位長(zhǎng)度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】植樹(shù)節(jié)來(lái)臨之際,學(xué)校準(zhǔn)備購(gòu)進(jìn)一批樹(shù)苗,已知2棵甲種樹(shù)苗和5棵乙種樹(shù)苗共需113元;3棵甲種樹(shù)苗和2棵乙種樹(shù)苗共需87元.
(1)求一棵甲種樹(shù)苗和一棵乙種樹(shù)苗的售價(jià)各是多少元?
(2)學(xué)校準(zhǔn)備購(gòu)進(jìn)這兩種樹(shù)苗共100棵,并且乙種樹(shù)苗的數(shù)量不多于甲種樹(shù)苗數(shù)量的2倍,請(qǐng)?jiān)O(shè)計(jì)出最省錢(qián)的購(gòu)買(mǎi)方案,并求出此時(shí)的總費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.點(diǎn)P在線段AB上以1cm/s的速度由點(diǎn)A向點(diǎn)B運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段BD上由點(diǎn)B向點(diǎn)D運(yùn)動(dòng).它們運(yùn)動(dòng)的時(shí)間為t(s).
(1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,當(dāng)t=1時(shí),△ACP與△BPQ是否全等,請(qǐng)說(shuō)明理由,并判斷此時(shí)線段PC和線段PQ的位置關(guān)系;
(2)如圖(2),將圖(1)中的“AC⊥AB,BD⊥AB”為改“∠CAB=∠DBA=60°”,其他條件不變.設(shè)點(diǎn)Q的運(yùn)動(dòng)速度為x cm/s,是否存在實(shí)數(shù)x,使得△ACP與△BPQ全等?若存在,求出相應(yīng)的x、t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com