如圖:⊙O為△ABC的外接圓,∠C=60°,過C作⊙O的切線,交AB的延長線于P,∠APC的平分線和AC、BC分別相交于D、E.
(1)證明:△CDE是等邊三角形;
(2)證明:PD•DE=PE•AD;
(3)若PC=7,S△PCE=
15
3
4
,求作以PE、DE的長為根的一元二次方程;
(4)試判斷E點是否能成為PD的中點?若能,請說明必需滿足的條件,精英家教網(wǎng)同時給出證明;若不能,請說明理由.
分析:(1)本題可通過證明△CEP和△APD相似,得出∠CED和∠CDE的補角相等,然后根據(jù)∠DCE=60°得出三角形CDE是等邊三角形的結(jié)論;
(2)本題實際上求的是△PEC和△PDA相似,由于(1)中已經(jīng)證得,那么可得出的線段的關系是PD•CE=PE•AD,由于三角形CDE是等邊三角形,因此將相等的邊置換后即可得出本題的結(jié)論;
(3)本題要求的實際是PE+DE和PE•DE的值,根據(jù)△PCE的面積我們可以用PE•DE•sin60°÷2來表示,那么可得出PE•DE的值,通過△PCE和△PDC相似可得出PC2=PE(PE+DE)=PE2+PE•DE,而PC已知,那么可得出PE的值,也就求出了DE的值,可得出PE+DE的值,然后根據(jù)一元二次方程根與系數(shù)的關系即可得出所求的方程;
(4)若E是PD中點,那么PE=DE=CE,因此∠ECP=∠P=30°,那么∠ACP=90°,由于PC是圓的切線,因此AC應該是圓的直徑.所以當AC是圓的直徑時,E是PD的中點.
解答:精英家教網(wǎng)(1)證明:連接OC.∵PC是圓的切線.
∴∠PCO=90°.
∵∧ACB=60°,⊙O是△ABC的外接圓,
∴∠ACO=∠BCO=30°,
∴∠PCB=∠PCO-∠BCO=60°,
∴∠PCB=∠A=∠ACB=60°
∵∠CPD=∠APD
∴△CEP∽△ADP
∴∠CEP=∠ADP
∴∠CDE=∠CED
∴CD=CE
∵∠C=60°
∴△CDE是等邊三角形;

(2)證明:由(1)可知:△CEP∽△ADP
∴PD•CE=PE•AD
∵△CDE是等邊三角形
∴CE=DE
∴PD•DE=PE•AD;

(3)解:∵S△PCE=
1
2
PE•DE•sin60°=
3
4
•PE•DE=
15
3
4
,
∴PE•DE=15,
∵∠PCB=∠PDC=60°,∠CPD=∠EPC,
∴△CPD∽△EPC,
∴PC2=PE•PD=PE(PE+DE)=PE2+PE•DE=PE2+15=49,
∴PE=
34

∴DE=
15
34
34
,
PE+DE=
49
34
34

∴以PE,DE為根的一元二次方程應該是x2-
49
34
34
x+15=0,
即:34x2-49
34
x+510=0;

(4)解:當AC是圓的直徑時,E是PD的中點.
證明:∵PC是圓的切線,AC是直徑
∴∠ACP=∠ABC=90°,∠PCE=∠A
∵∠ACB=∠DEC=60°
∴∠A=30°,∠PCE+∠EPC=60°
∵∠PCE=∠A
∴∠PCE=∠EPC=30°
∴CE=PE
∵△CDE是等邊三角形
∴CE=PE=DE
即E是PD的中點.
點評:本題主要考查了切線的性質(zhì),一元二次方程根與系數(shù)的關系以及圓周角定理等知識點,通過得出的等邊三角形得出角和邊相等是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

24、如圖,AD為△ABC的角平分線,DE⊥AB于點E,DF⊥AC于點F,連接EF交AD于點G.
(1)求證:AD垂直平分EF;
(2)若∠BAC=60°,猜測DG與AG間有何數(shù)量關系?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,E為△ABC的重心,ED=3,則AD=
9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•井研縣模擬)如圖,D為△ABC的AB邊上的一點,∠ABC=∠ACD,AD=2cm,AB=3cm,則AC=( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,D為△ABC的邊AB上一點,且∠ABC=∠ACD,AD=3cm,AB=4cm,則AC的長為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,DE為△ABC中AC邊的中垂線,BC=8,AB=10,則△EBC的周長是( 。

查看答案和解析>>

同步練習冊答案