x是怎樣的實(shí)數(shù)時(shí),式子
-x2
在實(shí)數(shù)范圍內(nèi)有意義.答:
 
分析:先根據(jù)二次根式的性質(zhì),被開方數(shù)大于等于0,得出-x2≥0,即x2≤0,再由乘方的性質(zhì),任何一個(gè)數(shù)的偶次方必定是一個(gè)非負(fù)數(shù),可知x2≥0,從而得出x=0.
解答:解:由題意,得-x2≥0,
∴x2≤0,
又∵x2≥0,
∴x=0.
故當(dāng)x=0時(shí),式子
-x2
在實(shí)數(shù)范圍內(nèi)有意義.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)為:二次根式的被開方數(shù)是非負(fù)數(shù);任何一個(gè)數(shù)的偶次方是非負(fù)數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2011•自貢)已知拋物線y=ax2+2x+3(a≠0)有如下兩個(gè)特點(diǎn):①無論實(shí)數(shù)a怎樣變化,其頂點(diǎn)都在某一條直線l上;②若把頂點(diǎn)的橫坐標(biāo)減少
1
a
,縱坐標(biāo)增大
1
a
分別作為點(diǎn)A的橫、縱坐標(biāo);把頂點(diǎn)的橫坐標(biāo)增加
1
a
,縱坐標(biāo)增加
1
a
分別作為點(diǎn)B的橫、縱坐標(biāo),則A,B兩點(diǎn)也在拋物線y=ax2+2x+3(a≠0)上.
(1)求出當(dāng)實(shí)數(shù)a變化時(shí),拋物線y=ax2+2x+3(a≠0)的頂點(diǎn)所在直線l的解析式;
(2)請(qǐng)找出在直線l上但不是該拋物線頂點(diǎn)的所有點(diǎn),并說明理由;
(3)你能根據(jù)特點(diǎn)②的啟示,對(duì)一般二次函數(shù)y=ax2+bx+c(a≠0)提出一個(gè)猜想嗎?請(qǐng)用數(shù)學(xué)語(yǔ)言把你的猜想表達(dá)出來,并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:044

x是怎樣的實(shí)數(shù)時(shí),下列名式在實(shí)數(shù)范圍內(nèi)有意義?

(1);
(2)
(3);
(4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知拋物線y=ax2+2x+3(a≠0)有如下兩個(gè)特點(diǎn):①無論實(shí)數(shù)a怎樣變化,其頂點(diǎn)都在某一條直線l上;②若把頂點(diǎn)的橫坐標(biāo)減少數(shù)學(xué)公式,縱坐標(biāo)增大數(shù)學(xué)公式分別作為點(diǎn)A的橫、縱坐標(biāo);把頂點(diǎn)的橫坐標(biāo)增加數(shù)學(xué)公式,縱坐標(biāo)增加數(shù)學(xué)公式分別作為點(diǎn)B的橫、縱坐標(biāo),則A,B兩點(diǎn)也在拋物線y=ax2+2x+3(a≠0)上.
(1)求出當(dāng)實(shí)數(shù)a變化時(shí),拋物線y=ax2+2x+3(a≠0)的頂點(diǎn)所在直線l的解析式;
(2)請(qǐng)找出在直線l上但不是該拋物線頂點(diǎn)的所有點(diǎn),并說明理由;
(3)你能根據(jù)特點(diǎn)②的啟示,對(duì)一般二次函數(shù)y=ax2+bx+c(a≠0)提出一個(gè)猜想嗎?請(qǐng)用數(shù)學(xué)語(yǔ)言把你的猜想表達(dá)出來,并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:四川省中考真題 題型:解答題

已知拋物線y=ax2+2x+3(a≠0)有如下兩個(gè)特點(diǎn):①無論實(shí)數(shù)a怎樣變化,其頂點(diǎn)都在某一條直線l上;②若把頂點(diǎn)的橫坐標(biāo)減少,縱坐標(biāo)增大分別作為點(diǎn)A的橫、縱坐標(biāo);把頂點(diǎn)的橫坐標(biāo)增加,縱坐標(biāo)增加分別作為點(diǎn)B的橫、縱坐標(biāo),則A,B兩點(diǎn)也在拋物線y=ax2+2x+3(a≠0)上。
(1)求出當(dāng)實(shí)數(shù)a變化時(shí),拋物線y=ax2+2x+3(a≠0)的頂點(diǎn)所在直線l的解析式;
(2)請(qǐng)找出在直線l上但不是該拋物線頂點(diǎn)的所有點(diǎn),并說明理由;
(3)你能根據(jù)特點(diǎn)②的啟示,對(duì)一般二次函數(shù)y=ax2+bx+c(a≠0)提出一個(gè)猜想嗎?請(qǐng)用數(shù)學(xué)語(yǔ)言把你的猜想表達(dá)出來,并給予證明。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年四川省自貢市中考數(shù)學(xué)試卷(解析版) 題型:解答題

已知拋物線y=ax2+2x+3(a≠0)有如下兩個(gè)特點(diǎn):①無論實(shí)數(shù)a怎樣變化,其頂點(diǎn)都在某一條直線l上;②若把頂點(diǎn)的橫坐標(biāo)減少,縱坐標(biāo)增大分別作為點(diǎn)A的橫、縱坐標(biāo);把頂點(diǎn)的橫坐標(biāo)增加,縱坐標(biāo)增加分別作為點(diǎn)B的橫、縱坐標(biāo),則A,B兩點(diǎn)也在拋物線y=ax2+2x+3(a≠0)上.
(1)求出當(dāng)實(shí)數(shù)a變化時(shí),拋物線y=ax2+2x+3(a≠0)的頂點(diǎn)所在直線l的解析式;
(2)請(qǐng)找出在直線l上但不是該拋物線頂點(diǎn)的所有點(diǎn),并說明理由;
(3)你能根據(jù)特點(diǎn)②的啟示,對(duì)一般二次函數(shù)y=ax2+bx+c(a≠0)提出一個(gè)猜想嗎?請(qǐng)用數(shù)學(xué)語(yǔ)言把你的猜想表達(dá)出來,并給予證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案