【題目】如圖,在Rt△OAB中,∠OAB=90°,OA=AB=6,將△OAB繞點O沿逆時針方向旋轉(zhuǎn)90°得到△OA1B1

(1)線段OA1的長是 , ∠AOB1的度數(shù)是
(2)連接AA1 , 求證:四邊形OAA1B1是平行四邊形;
(3)求點B旋轉(zhuǎn)到點B1的位置所經(jīng)過的路線的長.

【答案】
(1)6;135°
(2)證明:∵∠AOA1=∠OA1B1=90°,

∴OA∥A1B1,

又OA=AB=A1B1,

∴四邊形OAA1B1是平行四邊形


(3)解:L= =3 π
【解析】(1)解:因為,∠OAB=90°,OA=AB,
所以,△OAB為等腰直角三角形,即∠AOB=45°,
根據(jù)旋轉(zhuǎn)的性質(zhì),對應(yīng)點到旋轉(zhuǎn)中心的距離相等,即OA1=OA=6,
對應(yīng)角∠A1OB1=∠AOB=45°,旋轉(zhuǎn)角∠AOA1=90°,
所以,∠AOB1的度數(shù)是90°+45°=135°.
【考點精析】利用平行四邊形的判定和弧長計算公式對題目進(jìn)行判斷即可得到答案,需要熟知兩組對邊分別平行的四邊形是平行四邊形:兩組對邊分別相等的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形;兩組對角分別相等的四邊形是平行四邊形;對角線互相平分的四邊形是平行四邊形;若設(shè)⊙O半徑為R,n°的圓心角所對的弧長為l,則l=nπr/180;注意:在應(yīng)用弧長公式進(jìn)行計算時,要注意公式中n的意義.n表示1°圓心角的倍數(shù),它是不帶單位的.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AC=1,將△ABC繞點C順時針旋轉(zhuǎn)60°至△A′B′C,點A的對應(yīng)點A′恰好落在AB上,求BB′的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察思考下列計算過程:

112=121,=11.

同理,∵1112=12 321,=111.

由此你能猜想的值嗎?總結(jié)規(guī)律并進(jìn)行計算.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△OAB中,∠OAB=90°,OA=AB=6,將△OAB繞點O沿逆時針方向旋轉(zhuǎn)90°得到△OA1B1

(1)線段OA1的長是 , ∠AOB1的度數(shù)是
(2)連接AA1 , 求證:四邊形OAA1B1是平行四邊形;
(3)求點B旋轉(zhuǎn)到點B1的位置所經(jīng)過的路線的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中的x與y的部分對應(yīng)值如表

x

﹣1

0

1

3

y

﹣1

3

5

3

下列結(jié)論:
①ac<0;
②當(dāng)x>1時,y的值隨x值的增大而減。
③3是方程ax2+(b﹣1)x+c=0的一個根;
④當(dāng)﹣1<x<3時,ax2+(b﹣1)x+c>0.
其中正確的結(jié)論是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從﹣2,﹣ , ,1,3五個數(shù)中任選1個數(shù),記為a,它的倒數(shù)記為b,將a,b代入不等式組 中,能使不等式組至少有兩個整數(shù)解的概率是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在出行中,主動采用能降低二氧化碳排放量的交通方式,謂之“低碳出行”.明明一家積極響應(yīng)政府“綠色山城,低碳出行”的號召,今年2月﹣5月明明一家減少了駕車出行,他們將2月﹣5月駕車行駛的里程統(tǒng)計后繪制成以下兩幅不完整的統(tǒng)計圖:

(1)扇形統(tǒng)計圖中x= , 并補全折線統(tǒng)計圖;
(2)某中學(xué)也積極參與“綠色山城,低碳出行”活動中,決定從4名廣播社骨干成員中(其中兩名男生,兩名女生)選拔兩名同學(xué)去演講宣傳,請用畫樹形圖或列表的方法求所選出的兩名同學(xué)恰好是一名男生一名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線頂點坐標(biāo)為(1,3),且過點A(2,1).

(1)求拋物線解析式;
(2)若拋物線與x軸兩交點分別為點B、C,求線段BC的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料并解答下列問題.

你知道嗎?一些代數(shù)恒等式可以用平面圖形的面積來表示,例如(2ab)(ab)2a23abb2就可以用圖甲中的①或②的面積表示.

(1)請寫出圖乙所表示的代數(shù)恒等式;

(2)畫出一個幾何圖形,使它的面積能表示(ab)(a3b)a24ab3b2

(3)請仿照上述式子另寫一個含有a,b的代數(shù)恒等式,并畫出與之對應(yīng)的幾何圖形.

查看答案和解析>>

同步練習(xí)冊答案