【題目】如圖,拋物線與y軸交于點A(0,- ),與x軸交于B、C兩點,其對稱軸與x軸交于點D,直線l∥AB且過點D.
(1)求AB所在直線的函數(shù)表達式;
(2)請你判斷△ABD的形狀并證明你的結論;
(3)點E在線段AD上運動且與點A、D不重合,點F在直線l上運動,且∠BEF=60°,連接BF,求出△BEF面積的最小值.
【答案】(1)(2)△ABD是等邊三角形,(3)
【解析】試題分析:(1)先求得拋物線的解析式,再求得點B、C的坐標,再由待定系數(shù)法求出直線AB的解析式;(2)△ABD是等邊三角形,根據(jù)已知條件易證△BOA≌△DOA,可得BA=DA,根據(jù)銳角三角函數(shù)可求得∠ABO=60°,即可判定△ABD是等邊三角形;(3)過點E作EG∥x軸,交AB于點G, 易證△AEG是等邊三角形,可得AE=AG,再證△BEG≌△EFD,可得BE=EF,易得△BEF是等邊三角形 ,當BE⊥AD時,BE的長度最小,則△BEF的面積取最小值,求得△BEF面積的最小值即可.
試題解析:
(1)將點A(0,- )代入拋物線解析式中,得c=-,
當y=0時,
化簡得x2-2x-3=0
(x+1)(x-3)=0
x 1=-1, x 2=3
點B (-1,0),點C(3,0)
設直線AB的表達式為y=kx+b,
圖象經(jīng)過點A(0,- ),點B (-1,0),
代入得 ,解得
直線AB的表達式為
(2)△ABD是等邊三角形,
點B(-1,0), 點D(1,0)
OB=OD=1,
∵OA是公共邊,∠BOA=∠DOA=90°,
∴△BOA≌△DOA,
∴BA=DA,
tan∠ABO=,
∴∠ABO=60°,
△ABD是等邊三角形
(3)過點E作EG∥x軸,交AB于點G,
∵△ABD是等邊三角形
∴∠BAD=∠ABD=∠ADB=60°
∴∠AEG=∠AGE=60°
∴△AEG是等邊三角形,
∴AE=AG
∴DE=BG
∵AB∥l
∴∠
∴∠GBE+∠GEB=60°,∠DEF+∠GEB=60°,
∴∠GBE=∠DEF
∴△BEG≌△EFD
∴BE=EF
又∵∠BEF=60°
∴△BEF是等邊三角形
∴S△BEF=
當BE⊥AD時,BE的長度最小,則△BEF的面積取最小值,
此時,BE=ABsin60°=,
△BEF面積的最小值==
科目:初中數(shù)學 來源: 題型:
【題目】下列運算正確的是( )
A.a3+a2=2a5
B.(﹣ab2)3=a3b6
C.2a(1﹣a)=2a﹣2a2
D.(a+b)2=a2+b2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合題。
(1)根據(jù)圖示規(guī)律填表:
圖形編號 | 1×1的正方形個數(shù) | 2×2的正方形個數(shù) | 3×3的正方形個數(shù) | 4×4的正方形個數(shù) |
① | ||||
② | ||||
③ | ||||
④ |
(2)猜想:第n個圖形共有多少個正方形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在植樹節(jié)到來之際,某小區(qū)計劃購進A、B兩種樹苗共17棵,已知A種樹苗每棵80元,B種樹苗每棵60元.
(1)若購進A、B兩種樹苗剛好用去1220元,問購進A、B兩種樹苗各多少棵?
(2)若購買B種樹苗的數(shù)量少于A種樹苗的數(shù)量,請你給出一種費用最省的方案,并求出該方案所需費用.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】畫三視圖時,首先確定主視圖的位置.畫出主視圖,然后在主視圖的下面畫出俯視圖,在主視圖的右面畫出左視圖.主視圖反映物體的_______和_______,俯視圖反映物體的_______和_______,左視圖反映物體的_______和_______.因此,畫三視圖時,主、俯視圖要長對正,主、左視圖要高平齊,左、俯視圖要寬相等.看得見部分的輪廓線通常畫成實線,看不見部分的輪廓線通常畫成虛線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小王購買了一套經(jīng)濟適用房,他準備將地面鋪上地磚,地面結構如圖所示.請根據(jù)圖中的數(shù)據(jù)(單位:m),解答下列問題:
(1)用含x、y的代數(shù)式表示地面總面積;
(2)若x=5,y= ,鋪1m2地磚的平均費用為80元,那么鋪地磚的總費用為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,△ABC是邊長為3cm的等邊三角形,動點P、Q同時從A、B兩點出發(fā),分別沿AB、BC方向勻速移動,它們的速度都是1cm/s,當點P到達點B時,P、Q兩點停止運動,設點P的運動時間t(s),解答下列各問題:
(1)經(jīng)過 秒時,求△PBQ的面積;
(2)當t為何值時,△PBQ是直角三角形?
(3)是否存在某一時刻t,使四邊形APQC的面積是△ABC面積的三分之二?如果存在,求出t的值;不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知蝸牛從A點出發(fā),在一條數(shù)軸上來回爬行,規(guī)定:向正半軸運動記作“+”,向負半軸運動記作“﹣”,從開始到結束爬行的各段路程(單位:cm)依次為:+7,﹣5,﹣10,﹣8,+9,﹣6,+12,+4
(1)若A點在數(shù)軸上表示的數(shù)為﹣3,則蝸牛停在數(shù)軸上何處,請通過計算加以說明;
(2)若蝸牛的爬行速度為每秒 ,請問蝸牛一共爬行了多少秒?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com