【題目】(9)已知代數(shù)式(ax3)(2x4)x2b化簡后,不含x2項(xiàng)和常數(shù)項(xiàng).

(1)a,b的值;

(2)(2ab)2(a2b)(a2b)3a(ab)的值.

【答案】(1) ab=-12; (2)678.

【解析】試題分析:(1)原式利用多項(xiàng)式乘以多項(xiàng)式法則計(jì)算,去括號合并同類項(xiàng)后根據(jù)題意確定出ab的值即可;

2)原式利用完全平方公式,平方差公式,單項(xiàng)式乘以多項(xiàng)式法則計(jì)算,去括號合并得到最簡結(jié)果,把ab的值代入計(jì)算即可求出代數(shù)式的值.

解:(1)原式=2ax24ax6x12x2b(2a1)x2(4a6)x(12b)∵不含x2項(xiàng)和常數(shù)項(xiàng),∴2a10,-12b0,(3)a,b=-12.

(2)原式=4a24abb2a24b23a23ab7ab5b2.(7)當(dāng)ab=-12時(shí),原式=7××(12)5×(12)2678.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某中學(xué)有一塊四邊形的空地ABCD,學(xué)校計(jì)劃在空地上種植草皮,經(jīng)測量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,問學(xué)校需要投入多少資金買草皮?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知直線y=x+3x軸交于點(diǎn)A,與y軸交于點(diǎn)B,將直線在x軸下方的部分沿x軸翻折,得到一個(gè)新函數(shù)的圖象(圖中的“V形折線).

1)類比研究函數(shù)圖象的方法,請列舉新函數(shù)的兩條性質(zhì),并求新函數(shù)的解析式;

2)如圖2,雙曲線y=與新函數(shù)的圖象交于點(diǎn)C1a),點(diǎn)D是線段AC上一動(dòng)點(diǎn)(不包括端點(diǎn)),過點(diǎn)Dx軸的平行線,與新函數(shù)圖象交于另一點(diǎn)E,與雙曲線交于點(diǎn)P

①試求PAD的面積的最大值;

②探索:在點(diǎn)D運(yùn)動(dòng)的過程中,四邊形PAEC能否為平行四邊形?若能,求出此時(shí)點(diǎn)D的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中∠C=90°,AC=BC=2,OAB的中點(diǎn),以O為圓心,線段OC的長為半徑畫圓心角為90°的扇形OEF,弧EF經(jīng)過點(diǎn)C,則圖中陰影部分的面積為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平行四邊形具有的特征是(  )

A. 四個(gè)角都是直角 B. 對角線相等

C. 對角線互相平分 D. 四邊相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,點(diǎn)C在AOB的一邊OA上,過點(diǎn)C的直線DE//OB,CF平分ACD,CG CF于C .

(1)若O =40,求ECF的度數(shù);

(2)求證:CG平分OCD;

(3)當(dāng)O為多少度時(shí),CD平分OCF,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+ca≠0)的圖象經(jīng)過點(diǎn)A1,0),B2,0),C0,﹣2),直線x=mm2)與x軸交于點(diǎn)D

1)求二次函數(shù)的解析式;

2)在直線x=mm2)上有一點(diǎn)E(點(diǎn)E在第四象限),使得E、DB為頂點(diǎn)的三角形與以A、O、C為頂點(diǎn)的三角形相似,求E點(diǎn)坐標(biāo)(用含m的代數(shù)式表示);

3)在(2)成立的條件下,拋物線上是否存在一點(diǎn)F,使得四邊形ABEF為平行四邊形?若存在,請求出F點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:已知點(diǎn)A、B在數(shù)軸上分別表示有理數(shù)a、b,A、B兩點(diǎn)之間的距離表示為|AB|,當(dāng)A、B兩點(diǎn)中有一點(diǎn)在原點(diǎn)時(shí),不妨設(shè)點(diǎn)A在原點(diǎn),如圖1,|AB|=|OB|=|b|=|a﹣b|,當(dāng)A、B兩點(diǎn)都不在原點(diǎn)時(shí).

(1)如圖2,點(diǎn)A、B都在原點(diǎn)的右邊,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|

(2)如圖3,點(diǎn)A、B都在原點(diǎn)的左邊,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=a﹣b=|a﹣b|

(3)如圖4,點(diǎn)A、B在原點(diǎn)的兩邊,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=a﹣b=|a﹣b|

綜上,數(shù)軸上A、B兩點(diǎn)的距離|AB|=|a﹣b|

回答下列問題:

(1)數(shù)軸上表示25的兩點(diǎn)之間的距離是   ,數(shù)軸上表示﹣2和﹣5的兩點(diǎn)之間的距離是   ,數(shù)軸上表示﹣25的兩點(diǎn)之間的距離是   ;

(2)數(shù)軸上表示x和﹣1的兩點(diǎn)AB之間的距離是   ,如果|AB|=2那么x   

(3)若x表示一個(gè)有理數(shù),則|x﹣1|+|x+3|有最小值嗎?若有,請求出最小值;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算下列各題
(1)計(jì)算: +
(2)求x的值:4x2﹣36=0.

查看答案和解析>>

同步練習(xí)冊答案