【題目】如圖,在△ABC中,BC=2,∠ABC=90°,∠BAC=30°,將△ABC繞點A順時針旋轉(zhuǎn)90°,得到△ADE,其中點B與點D是對應(yīng)點,點C與點E是對應(yīng)點,連接BD,則BD的長為 .
【答案】2
【解析】解:∵在△ABC中,BC=2,∠ABC=90°,∠BAC=30°,∴AB= = =3 .
∵將△ABC繞點A順時針旋轉(zhuǎn)90°,得到△ADE,
∴∠BAD=90°,AB=AD=2 ,
∴BD= = =2 .
所以答案是:2 .
【考點精析】認(rèn)真審題,首先需要了解含30度角的直角三角形(在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半),還要掌握旋轉(zhuǎn)的性質(zhì)(①旋轉(zhuǎn)后對應(yīng)的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對應(yīng)的點到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了)的相關(guān)知識才是答題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形OABC中,OA=3,OC=2,點F是AB上的一個動點(F不與A,B重合),過點F的反比例函數(shù)y= 的圖象與BC邊交于點E.
(1)當(dāng)F為AB的中點時,求該函數(shù)的解析式;
(2)當(dāng)k為何值時,△EFA的面積最大,最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象的一部分,對稱軸是直線x=1,①b2>4ac;②4a﹣2b+c<0;③不等式ax2+bx+c>0的解集是x>3;④2a+b=0.其中判斷正確的是 . (只填寫正確結(jié)論的序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在三角形ABC中,點O是AC邊上的一個動點,過點O做直線MN平行于BC,設(shè)MN∠BCA的平分線于點E,交∠BCA的外角平分線于點F.
(1)試說明:EO=FO;
(2)當(dāng)點O運動到何處時,四邊形AECF是矩形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的紙箱里裝有3個標(biāo)號為1,2,﹣3的小球,它們的材質(zhì)、形狀、大小完全相同,小紅從紙箱里隨機取出一個小球,記下數(shù)字為x,小剛從剩下的2個小球中隨機取出一個小球,記下數(shù)字為y,這樣確定了點P的坐標(biāo)(x,y).
(1)請你運用畫樹狀圖或列表的方法,寫出點P所有可能的坐標(biāo);
(2)求點(x,y)在函數(shù)y=﹣ 圖象上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】回答下面的例題:
解方程:x2﹣|x|﹣2=0.
解:①x≥0時,原方程化為x2﹣x﹣2=0,解得x1=2,x2=﹣1(不合題意,舍去).
②x<0時,原方程化為x2+x﹣2=0,解得x1=﹣2,x2=1(不合題意,舍去).
∴原方程的根是x1=2,x2=﹣2.
請參照例題解方程x2+|x﹣4|﹣8=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】書店舉行購書優(yōu)惠活動:
①一次性購書不超過100元,不享受打折優(yōu)惠;
②一次性購書超過100元但不超過200元一律打九折;
③一次性購書超過200元一律打七折.
小麗在這次活動中,兩次購書總共付款229.4元,第二次購書原價是第一次購書原價的3倍,那么小麗這兩次購書原價的總和是元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次中學(xué)生田徑運動會上,根據(jù)參加男子跳高初賽的運動員的成績(單位:m),繪制出如下的統(tǒng)計圖①和圖②,請根據(jù)相關(guān)信息,解答下列問題:
(1)圖1中a的值為;
(2)求統(tǒng)計的這組初賽成績數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(3)根據(jù)這組初賽成績,由高到低確定9人進入復(fù)賽,請直接寫出初賽成績?yōu)?.65m的運動員能否進入復(fù)賽.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,P為邊AB上一點.
(1)如圖1,若∠ACP=∠B,求證:AC2=APAB;
(2)若M為CP的中點,AC=2.
①如圖2,若∠PBM=∠ACP,AB=3,求BP的長;
②如圖3,若∠ABC=45°,∠A=∠BMP=60°,直接寫出BP的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com