精英家教網 > 初中數學 > 題目詳情
(2009•臨沂)如圖,過原點的直線l與反比例函數y=-的圖象交于M,N兩點,根據圖象猜想線段MN的長的最小值是   
【答案】分析:欲求MN的長的最小值,由雙曲線的對稱性知ON=OM,可轉化為求OM的最小值,列出OM距離的求解式子,求式子的最小值即可.
解答:解:由題意可設點M的坐標為(x,-),
則OM==,
≥0,
,由此可得OM的最小值為,
由雙曲線的對稱性可知ON=OM,故MN的最小值為2
故答案為:2
點評:本題通過反比例函數的知識,考查學生的猜想探究能力.解題時先直觀地猜想,再按照從特殊到一般的方法去驗證.
練習冊系列答案
相關習題

科目:初中數學 來源:2010年浙江省溫州市永嘉縣中考數學模擬試卷(解析版) 題型:解答題

(2009•臨沂)如圖,拋物線經過A(4,0),B(1,0),C(0,-2)三點.
(1)求出拋物線的解析式;
(2)P是拋物線上一動點,過P作PM⊥x軸,垂足為M,是否存在P點,使得以A,P,M為頂點的三角形與△OAC相似?若存在,請求出符合條件的點P的坐標;若不存在,請說明理由;
(3)在直線AC上方的拋物線上有一點D,使得△DCA的面積最大,求出點D的坐標.

查看答案和解析>>

科目:初中數學 來源:2010年山東省泰安市寧陽縣中考數學模擬試卷(9)(解析版) 題型:解答題

(2009•臨沂)如圖,拋物線經過A(4,0),B(1,0),C(0,-2)三點.
(1)求出拋物線的解析式;
(2)P是拋物線上一動點,過P作PM⊥x軸,垂足為M,是否存在P點,使得以A,P,M為頂點的三角形與△OAC相似?若存在,請求出符合條件的點P的坐標;若不存在,請說明理由;
(3)在直線AC上方的拋物線上有一點D,使得△DCA的面積最大,求出點D的坐標.

查看答案和解析>>

科目:初中數學 來源:2010年山東省臨沂市中考數學試卷(樣卷)(解析版) 題型:解答題

(2009•臨沂)如圖,拋物線經過A(4,0),B(1,0),C(0,-2)三點.
(1)求出拋物線的解析式;
(2)P是拋物線上一動點,過P作PM⊥x軸,垂足為M,是否存在P點,使得以A,P,M為頂點的三角形與△OAC相似?若存在,請求出符合條件的點P的坐標;若不存在,請說明理由;
(3)在直線AC上方的拋物線上有一點D,使得△DCA的面積最大,求出點D的坐標.

查看答案和解析>>

科目:初中數學 來源:2010年山東省濟南市歷城區(qū)中考數學三模試卷(解析版) 題型:解答題

(2009•臨沂)如圖,拋物線經過A(4,0),B(1,0),C(0,-2)三點.
(1)求出拋物線的解析式;
(2)P是拋物線上一動點,過P作PM⊥x軸,垂足為M,是否存在P點,使得以A,P,M為頂點的三角形與△OAC相似?若存在,請求出符合條件的點P的坐標;若不存在,請說明理由;
(3)在直線AC上方的拋物線上有一點D,使得△DCA的面積最大,求出點D的坐標.

查看答案和解析>>

科目:初中數學 來源:2010年山東省濟南市初中學業(yè)水平考試數學模擬試卷(2)(解析版) 題型:解答題

(2009•臨沂)如圖,拋物線經過A(4,0),B(1,0),C(0,-2)三點.
(1)求出拋物線的解析式;
(2)P是拋物線上一動點,過P作PM⊥x軸,垂足為M,是否存在P點,使得以A,P,M為頂點的三角形與△OAC相似?若存在,請求出符合條件的點P的坐標;若不存在,請說明理由;
(3)在直線AC上方的拋物線上有一點D,使得△DCA的面積最大,求出點D的坐標.

查看答案和解析>>

同步練習冊答案