【題目】方成同學(xué)看到一則材料,甲開汽車,乙騎自行車從M地出發(fā)沿一條公路勻速前往N地,設(shè)乙行駛的時間為t(h),甲乙兩人之間的距離為y(km),y與t的函數(shù)關(guān)系如圖1所示,方成思考后發(fā)現(xiàn)了圖1的部分正確信息,乙先出發(fā)1h,甲出發(fā)20分鐘后與乙相遇,…,請你幫助方成同學(xué)解決以下問題:
(1)分別求出線段BC,CD所在直線的函數(shù)表達式;
(2)當(dāng)15<y<25時,求t的取值范圍;
(3)分別求出甲、乙行駛的路程S、S與時間t的函數(shù)表達式,并在圖2所給的直角坐標(biāo)系中分別畫出它們的圖象.

【答案】
(1)解:設(shè)線段BC所在直線的函數(shù)表達式為y=k1t+b1,

將點B( ,0),點C(2,30)代入函數(shù)解析式,得

,解得:

故線段BC所在直線的函數(shù)表達式為y=45t﹣60( ≤t≤2).

設(shè)線段CD所在直線的函數(shù)表達式為y=k2t+b2

將點C(2,30),點D(4,0)代入函數(shù)解析式,得

,解得:

故線段CD所在直線的函數(shù)表達式為y=﹣15t+60(2<t≤4)


(2)解:乙騎車的速度為30÷(4﹣2)=15(km/h),

∴線段OA所在直線的函數(shù)表達式為y=15t(0≤t≤1),

∴點A的縱坐標(biāo)為15.

當(dāng)15<y<25時,即15<45t﹣60<25或15<﹣15t+60<25,

解得: <t< <t<3.

故當(dāng)15<y<25時,t的取值范圍為 <t< <t<3


(3)解:甲開車的速度15÷( ﹣1)+15=60(km/h),

∴S=60(t﹣1)=60t﹣60(1≤t≤2),S=15t(0≤t≤4).

所畫圖形如圖.


【解析】(1)設(shè)線段BC所在直線的函數(shù)表達式為y=k1t+b1 , 將點B、C的坐標(biāo)代入其中得出關(guān)于k1、b1的二元一次方程組,解方程組即可求出結(jié)論;設(shè)線段CD所在直線的函數(shù)表達式為y=k2t+b2 , 將點C、D的坐標(biāo)代入其中得出關(guān)于k2、b2的二元一次方程組,解方程組即可得出結(jié)論;(2)根據(jù)線段CD可求出乙騎車的速度,從而得出線段OA的函數(shù)解析式,結(jié)合題意列出關(guān)于t的一元一次不等式,解不等式即可得出結(jié)論;(3)根據(jù)圖象求出甲開車的速度,由路程=速度×?xí)r間得出S、S與時間t的函數(shù)表達式,畫出圖形即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一條筆直的公路的同側(cè)依次排列著A,C,B三個村莊,某天甲、乙兩車分別從A,B兩地出發(fā),沿這條公路勻速行駛至C地停止,從甲車出發(fā)至甲車到達C地的過程,甲、乙兩車各自與C地的距離y(km)與甲車行駛時間t(h)之間的函數(shù)關(guān)系如圖所示.求:
(1)甲的速度是 , 乙的速度是;
(2)分別求出甲、乙兩車各自與C地的距離y(km)與甲車行駛時間t(h)之間的函數(shù)關(guān)系式,并寫出取值范圍;
(3)若甲、乙兩車到C地后繼續(xù)沿該公路原速度行駛,求甲車出發(fā)多少小時,兩車相距350km.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點B、C、D都在⊙O上,過C點作CA∥BD交OD的延長線于點A,連接BC,∠B=∠A=30°,BD=2
(1)求證:AC是⊙O的切線;
(2)求由線段AC、AD與弧CD所圍成的陰影部分的面積.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在Rt△ACB中,C為直角頂點,∠ABC=25°,O為斜邊中點.將OA繞著點O逆時針旋轉(zhuǎn)θ°(0<θ<180)至OP,當(dāng)△BCP恰為軸對稱圖形時,θ的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,ABCD為正方形,直線MN分別過AD邊與BC邊的中點,點P為直線MN上任意一點,連接PB、PC分別與AD邊交于E、F兩點,PC與BD交于點K,連接AK與PB交于點G.

(1)探索發(fā)現(xiàn)
當(dāng)點P落在AD邊上時,如圖2,試探究PB與AK的位置關(guān)系以及PB、PK、AK三者的數(shù)量關(guān)系(直接寫出無需證明);
(2)延伸拓展
當(dāng)點P落在正方形外,如圖1,以上兩個結(jié)論是否仍然成立?如果成立請給出證明,如果不成立請說明你的理由;
(3)應(yīng)用推廣
如圖3,在等腰Rt△ABD中,其中∠BAD=90°,腰長為3,M、N分別為AD邊與BD邊的中點,K為線段DN中點,F(xiàn)為AD邊上靠近于D的三等分點.連接KF并延長與直線MN交于點P,連接PB分別與AD、AK交于點E、G.試求四邊形EFKG的周長及面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半圓O的直徑,點C在半圓O上,AB=5cm,AC=4cm.D是弧BC上的一個動點(含端點B,不含端點C),連接AD,過點C作CE⊥AD于E,連接BE,在點D移動的過程中,BE的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,Rt△ABC中,∠ABC=90°,AD平分∠BAC交BC于D.
(1)用尺規(guī)畫圓O,使圓O過A、D兩點,且圓心O在邊AC上.(保留作圖痕跡,不寫作法)
(2)求證:BC與圓O相切;
(3)設(shè)圓O交AB于點E,若AE=2,CD=2BD.求線段BE的長和弧DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在平面直角坐標(biāo)系xOy中,△ABC的三個頂點坐標(biāo)分別為A(﹣2,4),B(﹣2,1),C(﹣5,2).

(1)畫出△ABC關(guān)于x軸對稱的△A1B1C1;
(2)將△A1B1C1的三個頂點的橫坐標(biāo)與縱坐同時乘以﹣2,得到對應(yīng)的點A2 , B2 , C2 , 請畫出△A2B2C2;
(3)則SA1B1C1:SA2B2C2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點E、F分別是BC、CD的中點,DE交AF于點M,點N為DE的中點.
(1)若AB=4,求△DNF的周長及sin∠DAF的值;
(2)求證:2ADNF=DEDM.

查看答案和解析>>

同步練習(xí)冊答案