【題目】如圖,已知△ABC是等邊三角形.
(1)如圖(1),點(diǎn)E在線段AB上,點(diǎn)D在射線CB上,且ED=EC.將△BCE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°至△ACF,連接EF.猜想線段AB,DB,AF之間的數(shù)量關(guān)系;
(2)點(diǎn)E在線段BA的延長(zhǎng)線上,其它條件與(1)中一致,請(qǐng)?jiān)趫D(2)的基礎(chǔ)上將圖形補(bǔ)充完整,并猜想線段AB,DB,AF之間的數(shù)量關(guān)系;
(3)請(qǐng)選擇(1)或(2)中的一個(gè)猜想進(jìn)行證明.
【答案】(1)猜想:AB=AF+BD;(2)猜想:AB=AF﹣BD;(3)AB=AF+BD.證明見(jiàn)解析.
【解析】整體分析:
(1)由于AF=BE,可能有BD=AE,因此猜想AB=AF+BD;(2)根據(jù)題意,畫(huà)出圖形,由圖形猜想AB=AF﹣BD;(3)證猜想(1),過(guò)點(diǎn)E作EG∥BC交AC于點(diǎn)G,則△AEG為等邊三角形,可證△BDE≌△GEC,得BD=AE,即可證明.
解:(1)猜想:AB=AF+BD;
(2)如圖2,猜想:AB=AF﹣BD;
(3)如圖(1),過(guò)點(diǎn)E作EG∥BC交AC于點(diǎn)G,得△AEG為等邊三角形,
∵DE=CE,
∴∠CDE=∠ECD,
又∵∠CDE+∠BED=∠ABC=∠ACD=∠ECD+∠GCE,
∴∠BED=∠GCE,
在△BDE和△GEC中,
,
∴△BDE≌△GEC,
∴BD=EG=AE
又∵AF=BE,
∴AB=BE+AE=AF+BD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)大家閱讀下面兩段材料,并解答問(wèn)題:
材料1:我們知道在數(shù)軸上表示4和1的兩點(diǎn)之間的距離為3(如圖1),而|4﹣1|=3,所以在數(shù)軸上表示4和1的兩點(diǎn)之間的距離為|4﹣1|.
材料2:再如在數(shù)軸上表示4和﹣2的兩點(diǎn)之間的距離為6(如圖2)而|4﹣(﹣2)|=6,所以數(shù)軸上表示數(shù)4和﹣2的兩點(diǎn)之間的距離|4﹣(﹣2)|.
(1)(如圖3)根據(jù)上述規(guī)律,我們可以得出結(jié)論:在數(shù)軸上表示數(shù)a和數(shù)b兩點(diǎn)之間的距離等于 .
(2)試一試,求在數(shù)軸上表示的數(shù)5與﹣4的兩點(diǎn)之間的距離為 .
(3)已知數(shù)軸上表示數(shù)a的點(diǎn)M與表示數(shù)﹣1的點(diǎn)之間的距離為3,表示數(shù)b的點(diǎn)N與表示數(shù)2的點(diǎn)之間的距離為4,求M,N兩點(diǎn)之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次捐款活動(dòng)中,學(xué)校團(tuán)支書(shū)想了解本校學(xué)生的捐款情況,隨機(jī)抽取了50名學(xué)生的捐款進(jìn)行了統(tǒng)計(jì),并繪制成如圖所示的統(tǒng)計(jì)圖.
(1)這50名同學(xué)捐款的眾數(shù)為 元,中位數(shù)為 元;
(2)如果捐款的學(xué)生有300人,估計(jì)這次捐款有多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了慶祝元旦,學(xué)校準(zhǔn)備舉辦一場(chǎng)“經(jīng)典誦讀”活動(dòng),某班準(zhǔn)備網(wǎng)購(gòu)一些經(jīng)典誦讀本和示讀光盤(pán),誦讀本一套定價(jià)100元,示讀光盤(pán)一張定價(jià)20元.元旦期間某網(wǎng)店開(kāi)展促銷(xiāo)活動(dòng),活動(dòng)期間向客戶提供兩種優(yōu)惠方案:
方案A:買(mǎi)一套誦讀本送一張示讀光盤(pán);
方案B:誦讀本和示讀光盤(pán)都按定價(jià)的九折付款.
現(xiàn)某班級(jí)要在該網(wǎng)店購(gòu)買(mǎi)誦讀本10套和示讀光盤(pán)x張(x>10),解答下列三個(gè)問(wèn)題:
(1)若按方案A購(gòu)買(mǎi),共需付款 元(用含x的式子表示),
若按方案B購(gòu)買(mǎi),共需付款 元(用含x的式子表示);
(2)若需購(gòu)買(mǎi)示讀光盤(pán)15張(即x=15)時(shí),請(qǐng)通過(guò)計(jì)算說(shuō)明按哪種方案購(gòu)買(mǎi)較為合算;
(3)若需購(gòu)買(mǎi)示讀光盤(pán)15張(即x=15)時(shí),你還能給出一種更為省錢(qián)的購(gòu)買(mǎi)方法嗎?若能,請(qǐng)寫(xiě)出你的購(gòu)買(mǎi)方法和所需費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】QQ運(yùn)動(dòng)記錄的小莉爸爸2017年2月份7天步行的步數(shù)(單位:萬(wàn)步)如下表:
日期 | 2月6日 | 2月7日 | 2月8日 | 2月9日 | 2月10日 | 2月11日 | 2月12日 |
步數(shù) | 2.1 | 1.7 | 1.8 | 1.9 | 2.0 | 1.8 | 2.0 |
(1)制作適當(dāng)?shù)慕y(tǒng)計(jì)圖表示小莉爸爸這7天步行的步數(shù)的變化趨勢(shì);
(2)求小莉爸爸這7天中每天步行的平均步數(shù);
(3)估計(jì)小莉爸爸2月份步行的總步數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】命題:有兩個(gè)角相等的三角形是等腰三角形(簡(jiǎn)稱“等角對(duì)等邊”).
已知:如圖,△ABC中,∠B=∠C.
求證:AB=AC.
三位同學(xué)作出了三種不同的輔助線,并完成了命題的證明.小剛的方法:作∠BAC的平分線AD,可證△ABD≌△ACD,得AB=AC;小亮的方法:作BC邊上的高AD,可證△ABD≌△ACD,得AB=AC;小莉的方法:作BC邊上的中線AD.
(1)請(qǐng)你寫(xiě)出小剛與小亮方法中△ABD≌△ACD的理由:
(2)請(qǐng)你按照小莉的思路完成命題的證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個(gè)頂點(diǎn)分別是A(-4, 1),B(-1,3),C(-1,1)
(1)將△ABC以原點(diǎn)O為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫(huà)出旋轉(zhuǎn)后對(duì)應(yīng)的△;平移△ABC,若A對(duì)應(yīng)的點(diǎn)坐標(biāo)為(-4,-5),畫(huà)出△;
(2)若△繞某一點(diǎn)旋轉(zhuǎn)可以得到△,直接寫(xiě)出旋轉(zhuǎn)中心坐標(biāo)是__________;
(3)在x軸上有一點(diǎn)P是的PA+PB的值最小,直接寫(xiě)出點(diǎn)P的坐標(biāo)___________;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A、B兩地在數(shù)軸上相距20米,A地在數(shù)軸上表示的點(diǎn)為-8,小烏龜從A地出發(fā)沿?cái)?shù)軸往B地方向前進(jìn),第一次前進(jìn)1米,第二次后退2米,第三次再前進(jìn)3米,第四次又后退4米,……,按此規(guī)律行進(jìn),(數(shù)軸的一個(gè)單位長(zhǎng)度等于1米)
(1)求B地在數(shù)軸上表示的數(shù);
(2)若B地在原點(diǎn)的左側(cè),經(jīng)過(guò)第五次行進(jìn)后小烏龜?shù)竭_(dá)點(diǎn)P,第六次行進(jìn)后到達(dá)點(diǎn)Q,則點(diǎn)P和點(diǎn)Q到點(diǎn)A的距離相等嗎?請(qǐng)說(shuō)明理由;
(3)若B地在原點(diǎn)的右側(cè),那么經(jīng)過(guò)30次行進(jìn)后,小烏龜?shù)竭_(dá)的點(diǎn)與點(diǎn)B之間的距離是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在ABCD中,點(diǎn)E是BC的中點(diǎn),連接AE并延長(zhǎng)交DC的延長(zhǎng)線于點(diǎn)F,連接BF.
(1)求證:△ABE≌△FCE;
(2)若AF=AD,求證:四邊形ABFC是矩形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com