已知a、b為有理數(shù),下列式子:①|(zhì)ab|>ab;②
a
b
<0
;③|
a
b
|=-
a
b
;④a3+b3=0.其中一定能夠表示a、b異號(hào)的有(  )個(gè).
A.1B.2C.3D.4
當(dāng)|ab|>ab時(shí),a、b一定異號(hào);
當(dāng)
a
b
<0時(shí),a、b一定異號(hào);
當(dāng)|
a
b
|=-
a
b
,則
a
b
≤0,a可能等于0,b≠0,a、b不一定異號(hào);
當(dāng)a3+b3=0,a3=-b3,即a3=(-b)3,
所以a=-b,有可能a=b=0,a、b不一定異號(hào).
所以一定能夠表示a、b異號(hào)的有①②.
故選B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

有一種“二十四點(diǎn)”的游戲,其游戲規(guī)則是這樣的:任取四個(gè)1~13之間的自然數(shù),將這四個(gè)數(shù)(每個(gè)數(shù)用且只用一次進(jìn)行如加減乘除四則遠(yuǎn)算,便其結(jié)果等于24,例如對(duì)1,2,3,4,可作運(yùn)算:(1+2+3)×4=24,注意上述運(yùn)算與4×(1+2+3)應(yīng)視為同一方法.類似的,現(xiàn)有四個(gè)數(shù)3,4,-6,10,請(qǐng)運(yùn)用上述的規(guī)則寫出三種不同的運(yùn)算式,便其結(jié)果等于24.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

觀察算式:
1
1×2
=1-
1
2
=
1
2
,
1
1×2
+
1
2×3
=1-
1
2
+
1
2
-
1
3
=
2
3
1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=
3
4

按規(guī)律填空
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
=______
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+…+
1
99×100
=______;
如果n為正整數(shù),那么
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+…+
1
n×(n+1)
=______.
由此拓展寫出具體過程,
1
1×3
+
1
3×5
+
1
5×7
+…+
1
99×101
=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

計(jì)算
(-6
1
2
4
13
-8÷|-4+2|

(-2)4÷(-2
2
3
)2+5
1
2
×(-
1
6
)-0.25

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

計(jì)算:
(1)(-81)÷
9
4
×
4
9
÷(-16)

(2)-1.5+1.4-(-3.6)-4.3+(-5.2);
(3)(-
3
7
)×0.125×(-2
1
3
)×(-8)
;
(4)-22×7×(-1)9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

計(jì)算:
(1)(
5
9
-
3
4
+
1
18
)×(-62)

(2)(-1)3-[-1-
1
2
(1-
1
3
)]

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

計(jì)算
(1)23-17-(-7)+(-16)
(2)26×
5
8
-26
1
8
-26×(-
1
4

(3)(
1
4
-
1
9
-
1
12
)×(-36)÷(-2)
(4)-3×(-
2
3
2-22×(
2
3
-1)-8÷(-
2
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

計(jì)算題:-12009+4×(-3)2+(-6)÷(-2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

計(jì)算:23-6×(-3)+2×(-4)-|-5|

查看答案和解析>>

同步練習(xí)冊(cè)答案