Rt△ABC中,AB=6,AC=8,則斜邊長(zhǎng)為_(kāi)_______.

10或8
分析:本題需要討論邊長(zhǎng)為8的邊是否為斜邊,
(1)邊長(zhǎng)為8的邊是斜邊,則斜邊長(zhǎng)為8,
(2)邊長(zhǎng)為8的邊不是斜邊,則已知兩直角邊根據(jù)勾股定理可以求斜邊.
解答:
(1)邊長(zhǎng)為8的邊是斜邊,則斜邊長(zhǎng)為8;
(2)邊長(zhǎng)為8的邊不是斜邊,則AB,AC為直角邊,
則斜邊BC長(zhǎng)為=10.
故答案為 10或8.
點(diǎn)評(píng):本題考查了勾股定理在直角三角形中的運(yùn)用,考查了分類討論思想,本題中討論邊長(zhǎng)為8的邊是否是斜邊是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

10、在Rt△ABC中,AB=AC,D、E是斜邊BC上兩點(diǎn),且∠DAE=45°,將△ADC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后,得到△AFB,連接EF,下列結(jié)論①△AEF≌△AED;②∠AED=45°;③BE+DC=DE;④BE2+DC2=DE2,其中正確的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,AB=AC,P是邊AB(不含端點(diǎn))上的動(dòng)點(diǎn),過(guò)P作BC的垂線PR,R為垂足,∠PRB的平分線與AB相交于點(diǎn)S.已知在線段RS上存在一點(diǎn)T,若以線段PT為一邊作正方形PTEF,其頂點(diǎn)E、F恰好分別在邊BC、精英家教網(wǎng)AC上.
(1)證明:△SBR∽△ABC;
(2)證明:ST=AP;
(3)設(shè)AB=1,PA=x,正方形PTEF的面積為y,試求y與x的函數(shù)關(guān)系,并求出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•湖州)一節(jié)數(shù)學(xué)課后,老師布置了一道課后練習(xí)題:
如圖,已知在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC,于點(diǎn)O,點(diǎn)PD分別在AO和BC上,PB=PD,DE⊥AC于點(diǎn)E,求證:△BPO≌△PDE.

(1)理清思路,完成解答(2)本題證明的思路可用下列框圖表示:

根據(jù)上述思路,請(qǐng)你完整地書(shū)寫(xiě)本題的證明過(guò)程.
(2)特殊位置,證明結(jié)論
若PB平分∠ABO,其余條件不變.求證:AP=CD.
(3)知識(shí)遷移,探索新知
若點(diǎn)P是一個(gè)動(dòng)點(diǎn),點(diǎn)P運(yùn)動(dòng)到OC的中點(diǎn)P′時(shí),滿足題中條件的點(diǎn)D也隨之在直線BC上運(yùn)動(dòng)到點(diǎn)D′,請(qǐng)直接寫(xiě)出CD′與AP′的數(shù)量關(guān)系.(不必寫(xiě)解答過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,AB=AC,D、E是斜邊BC上兩點(diǎn),且∠DAE=45°,將△ADC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后,得到△AFB,連接EF,下列結(jié)論:(1)△AED≌△AEF;(2)△ABE∽△ACD;(3)BE+DC=DE;(4)BE2+DC2=DE2.其中正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知在Rt△ABC中,AB=AC,以AB為直徑作⊙O交BC于點(diǎn)F,連結(jié)OC交⊙O于點(diǎn)D,連結(jié)BD并延長(zhǎng)交AC于點(diǎn)E,連結(jié)DF.
(1)求證:∠CFD=∠AEB;
(2)已知AB=4,求AE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案