【題目】為促進(jìn)學(xué)生多樣化發(fā)展,某校組織了課后服務(wù)活動(dòng),設(shè)置了體育類、藝術(shù)類,文學(xué)類及其它類社團(tuán)(要求人人參與,每人只能選擇一類)為了解學(xué)生喜愛哪類社團(tuán)活動(dòng),學(xué)校做了一次抽樣調(diào)查,根據(jù)收集到的數(shù)據(jù),繪制成如下兩幅不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(如圖①、圖②)如下,請(qǐng)根據(jù)國中所給的信息,解答下列問題:

1)此次共調(diào)查了多少人?

2)求藝術(shù)類在扇形統(tǒng)計(jì)圖中所占的四心角的度數(shù);

3)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

4)如果該校有學(xué)生2200人,那么在全校學(xué)生中,喜受文學(xué)類和其它類兩個(gè)社團(tuán)的學(xué)生共有多少人?

【答案】1200人;(272°;(3)見解析;4880人.

【解析】

1)根據(jù)體育類學(xué)生人數(shù)和所占的百分比,可以求得本次調(diào)查的總?cè)藬?shù);

2)根據(jù)條形圖中的數(shù)據(jù)可以求得藝術(shù)類所占的百分比,再乘以360°即可;

3)根據(jù)(1)中的結(jié)果和統(tǒng)計(jì)圖中的數(shù)據(jù)可以求得文學(xué)類和其它類的學(xué)生數(shù),從而可以將條形統(tǒng)計(jì)圖補(bǔ)充完整;

4)先求出樣本中喜受文學(xué)類和其它類兩個(gè)社團(tuán)的學(xué)生所占的百分比,再利用樣本估計(jì)總體的思想,用樣本百分比乘以2200即可.

解:(180÷40%200(人),

即此次共調(diào)查了200人;

2360°×72°

即藝術(shù)類在扇形統(tǒng)計(jì)圖中所占的圓心角的度數(shù)是72°;

3)選擇文學(xué)類的學(xué)生有:200×30%60(人),

選擇其他類的學(xué)生有:20080406020(人),

補(bǔ)全的條形統(tǒng)計(jì)圖如右圖所示;

42200×880(人),

答:在全校學(xué)生中,喜受文學(xué)類和其它類兩個(gè)社團(tuán)的學(xué)生共有880人.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在邊長為1個(gè)單位長度的正方形網(wǎng)格中建立如圖所示的平面直角坐標(biāo)系,ABC的頂點(diǎn)都在格點(diǎn)上,請(qǐng)解答下列問題

1)畫出將ABC向左平移4個(gè)單位長度后得到的圖形A1B1C1,并寫出點(diǎn)C1的坐標(biāo);

2)畫出將ABC關(guān)于原點(diǎn)O對(duì)稱的圖形A2B2C2,并寫出點(diǎn)C2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某莊有甲、乙兩家草莓采摘園的草莓銷售價(jià)格相同,春節(jié)期間,兩家采摘園將推出優(yōu)惠方案,甲園的優(yōu)惠方案是:游客進(jìn)園需購買門票,采摘的草莓六折優(yōu)惠;乙園的優(yōu)惠方案是:游客進(jìn)園不需購買門票,采摘的草莓超過一定數(shù)量后,超過部分打折優(yōu)惠.優(yōu)惠期間,某游客的草莓采摘量為(千克),在甲園所需總費(fèi)用為(元),在乙園所需總費(fèi)用為(元),、之間的函數(shù)關(guān)系如圖所示.

1)甲采摘園的門票是_____,兩個(gè)采摘園優(yōu)惠前的草莓單價(jià)是每千克____;

2)當(dāng)時(shí),求的函數(shù)表達(dá)式;

3)游客在“春節(jié)期間”采摘多少千克草莓時(shí),甲、乙兩家采摘園的總費(fèi)用相同.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形中, , ,邊的中點(diǎn),,分別是上的動(dòng)點(diǎn),連接,,則的最小值是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知DEBC,CD是∠ACB的平分線,∠ADE70°,∠ACB40°,求∠EDC和∠BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,ABCD,E是射線FD上的一點(diǎn),∠ABC140°,∠CDF40°

1)試說明BCEF;

2)若∠BAE110°,連接BD,如圖2.若BDAE,則BD是否平分∠ABC,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在將式子m0)化簡時(shí),

小明的方法是:===;

小亮的方法是:

小麗的方法是:.

則下列說法正確的是( 。

A. 小明、小亮的方法正確,小麗的方法不正確

B. 小明、小麗的方法正確,小亮的方法不正確

C. 小明、小亮、小麗的方法都正確

D. 小明、小麗、小亮的方法都不正確

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=16cm,BC=6cm,點(diǎn)P從點(diǎn)A出發(fā)沿AB向點(diǎn)B移動(dòng)(不與點(diǎn)AB重合),一直到達(dá)點(diǎn)B為止;同時(shí),點(diǎn)Q從點(diǎn)C出發(fā)沿CD向點(diǎn)D移動(dòng)(不與點(diǎn)C、D重合).運(yùn)動(dòng)時(shí)間設(shè)為t秒.

1)若點(diǎn)P、Q均以3cm/s的速度移動(dòng),則:AP=  cm;QC=  cm.(用含t的代數(shù)式表示)

2)若點(diǎn)P3cm/s的速度移動(dòng),點(diǎn)Q2cm/s的速度移動(dòng),經(jīng)過多長時(shí)間PD=PQ,使△DPQ為等腰三角形?

3)若點(diǎn)P、Q均以3cm/s的速度移動(dòng),經(jīng)過多長時(shí)間,四邊形BPDQ為菱形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對(duì)稱軸為直線.下列結(jié)論中,正確的是(  )

A. abc>0 B. a+b=0 C. 2b+c>0 D. 4a+c<2b

查看答案和解析>>

同步練習(xí)冊(cè)答案