【題目】已知,如圖,點,,,在同一條直線上,且,∠A=∠FDE,在①,②∠CBA=∠E,③∠C=∠F中,請選擇其中一個條件,證明△ABC≌△DEF.
(1)你選擇的條件是________(只需填寫序號);
(2)證明.
【答案】(1)見解析;(2)見解析
【解析】
要判定△ABC≌△DEF,已知AD=BE,可證AB=DE,又已知∠A=∠FDE,具備了一組邊和一組角對應(yīng)相等,故可分別選擇其中一個條件①AC=DF,②∠CBA=∠E,③∠C=∠F中,分別根據(jù)SAS,ASA,AAS證明△ABC≌△DEF.
(1)添加條件①AC=DF.
證明:∵AD=BE,
∴AD+BD=BE+BD,
即AB=DE.
在△ABC和△DEF中,
AB=DE,
∠A=∠FDE,
AC=DF,
∴△ABC≌△DEF(SAS).
(2)添加條件②∠CBA=∠E.
證明:∵AD=BE,
∴AD+BD=BE+BD,
即AB=DE.
在△ABC和△DEF中,
∠A=∠FDE,
AB=DE,
∠CBA=∠E,
∴△ABC≌△DEF(ASA).
(3)添加條件③∠C=∠F.
證明:∵AD=BE,
∴AD+BD=BE+BD,
即AB=DE.
在△ABC和△DEF中,
∠A=∠FDE,
∠C=∠F,
AB=DE,
∴△ABC≌△DEF(AAS).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小巷左右兩側(cè)是豎直的墻,一架梯子斜靠在左墻時,梯子底端到左墻角的距離為0.7米,頂端到地面距離為2.4米,如果保持梯子底端位置不動,將梯子斜靠在右墻時,頂端到地面距離為2米,求小巷的寬度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校要從小王和小李兩名同學中挑選一人參加全市知識競賽,在最近的五次選拔測試中,他倆的成績分別如下表:
姓 名 | 1 | 2 | 3 | 4 | 5 |
小 王 | 60 | 75 | 100 | 90 | 75 |
小 李 | 70 | 90 | 80 | 80 | 80 |
根據(jù)上表解答下列問題:
(1)完成下表:
姓 名 | 平均成績(分) | 中位數(shù)(分) | 眾數(shù)(分) | 方差 |
小 王 | 75 | 190 | ||
小 李 | 80 | 80 |
(2)在這五次測試中,成績比較穩(wěn)定的同學是誰?若將80分以上(含80分)的成績視為秀,則小王、小李在這五次測試中的優(yōu)秀率各是多少?
(3)歷屆比賽表明,成績達到80分以上(含80分)就很可能獲獎,成績達到90分以上(含90分)就很可能獲得一等獎,那么你認為選誰參加比賽比較合適?說明你的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知等腰△ABC中,AD⊥BC于點D,且AD=BC,則△ABC底角的度數(shù)為( )
A.45°B.75°C.45°或75°D.60°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列多面體,并把下表補充完整.
名稱 | 三棱柱 | 四棱柱 | 五棱柱 | 六棱柱 |
圖形 | ||||
頂點數(shù) | 6 | 10 | 12 | |
棱數(shù) | 9 | 12 | ||
面數(shù) | 5 | 8 |
觀察上表中的結(jié)果,你能發(fā)現(xiàn)、、之間有什么關(guān)系嗎?請寫出關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABCD中,邊長為10cm,點E在AB邊上,BE=6cm.如果點P在線段BC上以4cm/秒的速度由B點向C點運動,同時,點Q在線段CD上以acm/秒的速度由C點向D點運動,設(shè)運動的時間為t秒,
(1)CP的長為 cm(用含t的代數(shù)式表示);
(2)若以E、B、P為頂點的三角形和以P、C、Q為頂點的三角形全等,求a的值.
(3)若點Q以(2)中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都逆時針沿正方形ABCD四邊運動.則點P與點Q會不會相遇?若不相遇,請說明理由.若相遇,求出經(jīng)過多長時間點P與點Q第一次在正方形ABCD的何處相遇?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人在筆直的湖邊公路上同起點、同終點、同方向勻速步行2400米,先到終點的人原地休息.已知甲先出發(fā)4分鐘.在整個步行過程中,甲、乙兩人的距離y(米)與甲出發(fā)的時間t
(分)之間的關(guān)系如圖所示,下列結(jié)論:
①甲步行的速度為60米/分;
②乙走完全程用了30分鐘;
③乙用16分鐘追上甲;
④乙到達終點時,甲離終點還有320米
其中正確的結(jié)論有( 。
A. 1 個B. 2 個C. 3 個D. 4 個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在平面直角坐標系中,點A,B的坐標分別為(﹣1,0),(3,0),現(xiàn)同時將點A,B分別向上平移2個單位長度,再向右平移1個單位長度,分別得到點A,B的對應(yīng)點C,D,連接AC,BD,CD.
(1)求點C,D的坐標及S四邊形ABDC;
(2)在y軸上是否存在一點Q,連接QA,QB,使S△QAB=S四邊形ABDC若存在這樣一點,求出點Q的坐標;若不存在,試說明理由;
(3)如圖②,點P是線段BD上的一個動點,連接PC,PO,當點P在BD上移動時(不與B,D重合),求證:∠DCP+∠BOP=∠CPO.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】根據(jù)第五次、第六次全國人口普查結(jié)果顯示:某市常住人口總數(shù)由第五次的400萬人增加到第六次的450萬人,常住人口的學歷狀況統(tǒng)計圖如圖所示(部分信息未給出):
解答下列問題:
(1)求第六次人口普查小學學歷的人數(shù),并把條形統(tǒng)計圖補充完整;
(2)求第五次人口普查中該市常住人口每萬人中具有初中學歷的人數(shù);
(3)第六次人口普查結(jié)果與第五次相比,每萬人中初中學歷的人數(shù)增加了多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com