【題目】如圖,已知∠1=∠2,則不一定能使△ABD≌△ACD的條件是(
A.AB=AC
B.BD=CD
C.∠B=∠C
D.∠BDA=∠CDA

【答案】B
【解析】解:A、∵∠1=∠2,AD為公共邊,若AB=AC,則△ABD≌△ACD(SAS);故A不符合題意; B、∵∠1=∠2,AD為公共邊,若BD=CD,不符合全等三角形判定定理,不能判定△ABD≌△ACD;故B符合題意;
C、∵∠1=∠2,AD為公共邊,若∠B=∠C,則△ABD≌△ACD(AAS);故C不符合題意;
D、∵∠1=∠2,AD為公共邊,若∠BDA=∠CDA,則△ABD≌△ACD(ASA);故D不符合題意.
故選:B.
利用全等三角形判定定理ASA,SAS,AAS對(duì)各個(gè)選項(xiàng)逐一分析即可得出答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=ax2+bx+c(b>a>0)與x軸最多有一個(gè)交點(diǎn),現(xiàn)有以下四個(gè)結(jié)論:
①該拋物線的對(duì)稱軸在y軸左側(cè);
②關(guān)于x的方程ax2+bx+c+2=0無(wú)實(shí)數(shù)根;
③a﹣b+c≥0;
的最小值為3.
其中,正確結(jié)論的個(gè)數(shù)為(  )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某品牌太陽(yáng)能熱水器的實(shí)物圖和橫斷面示意圖,已知真空集熱管與支架CD所在直線相交于水箱橫斷面⊙O的圓心O,支架CD與水平面AE垂直,AB=150厘米,∠BAC=30°,另一根輔助支架DE=76厘米,∠CED=60°.
(1)求垂直支架CD的長(zhǎng)度;(結(jié)果保留根號(hào))
(2)求水箱半徑OD的長(zhǎng)度.(結(jié)果保留三個(gè)有效數(shù)字,參考數(shù)據(jù): ≈1.414, ≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將邊長(zhǎng)為 的正方形ABCD沿對(duì)角線AC平移,使點(diǎn)A移至線段AC的中點(diǎn)A′處,得新正方形A′B′C′D′,新正方形與原正方形重疊部分(圖中陰影部分)的面積是(
A.
B.
C.1
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,PA,PB是⊙O的兩條切線,切點(diǎn)分別為A,B,OP交AB于點(diǎn)C,OP=13,sin∠APC=
(1)求⊙O的半徑;
(2)求弦AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=2x﹣2與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.點(diǎn)C是該直線上不同于B的點(diǎn),且CA=AB.

(1)寫(xiě)出A、B兩點(diǎn)坐標(biāo);

(2)過(guò)動(dòng)點(diǎn)P(m,0)且垂直于x軸的直線與直線AB交于點(diǎn)D,若點(diǎn)D不在線段BC上,求m的取值范圍;

(3)若直線BE與直線AB所夾銳角為45°,請(qǐng)直接寫(xiě)出直線BE的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:
(1) ;
(2)a(a﹣3)+(2﹣a)(2+a).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以點(diǎn)O為圓心的兩個(gè)同心圓中,矩形ABCD的邊BC為大圓的弦,邊AD與小圓相切于點(diǎn)M,OM的延長(zhǎng)線與BC相交于點(diǎn)N.
(1)點(diǎn)N是線段BC的中點(diǎn)嗎?為什么?
(2)若圓環(huán)的寬度(兩圓半徑之差)為6cm,AB=5cm,BC=10cm,求小圓的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線 軸交于點(diǎn)A、B,與 軸交于點(diǎn)C,則能使△ABC為等腰三角形拋物線的條數(shù)是( )
A.5
B.4
C.3
D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案