【題目】閱讀下面的情境對(duì)話,然后解答問(wèn)題
(1)根據(jù)“奇異三角形”的定義,請(qǐng)你判斷小華提出的命題:“等邊三角形一定是奇異三角形”是真命題還是假命題?
(2)在RtABC 中, ∠ACB=90°,AB=c,AC=b,BC=a,且b>a,若RtABC是奇異三角形,求a:b:c;
(3)如圖,AB是⊙O的直徑,C是上一點(diǎn)(不與點(diǎn)A、B重合),D是半圓的中點(diǎn),CD在直徑AB的兩側(cè),若在⊙O內(nèi)存在點(diǎn)E使得AE=AD,CB=CE.
求證:ACE是奇異三角形;
當(dāng)ACE是直角三角形時(shí),求∠AOC的度數(shù).
【答案】解:(1)真命題
(2)在RtABC 中a2+b2= c2,
∵c>b>a>0
∴2c2>a2+b2,2a2<c2+b2
∴若RtABC是奇異三角形,一定有2b2=c2+ a2
∴2b2=a2+(a2+b2)
∴b2=2a2 得:b=a
∵c2=b2+ a2=3a2
∴c=
∴a:b: c=
(3)∵AB是⊙O的直徑ACBADB=90°
在RtABC 中,AC2+BC2=AB2
在RtADB 中,AD2+BD2=AB2
∵點(diǎn)D是半圓的中點(diǎn)
∴=
∴AD=BD
∴AB2=AD2+BD2=2AD2
∴AC2+CB2=2AD2
又∵CB=CE,AE=AD
∴AC2=CE2=2AE2
∴ACE是奇異三角形
由可得ACE是奇異三角形
∴AC2=CE2=2AE2
當(dāng)ACE是直角三角形時(shí)
【解析】(1)根據(jù)“奇異三角形”的定義與等邊三角形的性質(zhì),求證即可;
(2)根據(jù)勾股定理與奇異三角形的性質(zhì),可得a2+b2=c2與a2+c2=2b2,用a表示出b與c,即可求得答案;
(3)①AB是⊙O的直徑,即可求得∠ACB=∠ADB=90°,然后利用勾股定理與圓的性質(zhì)即可證得;
②利用(2)中的結(jié)論,分別從AC:AE:CE=去分析,即可求得結(jié)果.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以矩形ABCD的邊CD為直徑作⊙O,交矩形的對(duì)角線BD于點(diǎn)E,點(diǎn)F是BC的中點(diǎn),連接EF.
(1)試判斷EF與⊙O的位置關(guān)系,并說(shuō)明理由.
(2)若DC=2,EF=,點(diǎn)P是⊙O上不與E、C重合的任意一點(diǎn),則∠EPC的度數(shù)為 (直接寫(xiě)出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把下列各數(shù)分別填入相應(yīng)的集合里
+6,﹣8,﹣0.4,0,230%, ,﹣1 ,﹣(﹣5),﹣|﹣2|,﹣ ,0.010010001…,﹣2.33…
(1)正數(shù)集合:{};
(2)負(fù)數(shù)集合:{ };
(3)整數(shù)集合:{};
(4)無(wú)理數(shù)集合:{}.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下說(shuō)法正確的是
A. 每個(gè)內(nèi)角都是120°的六邊形一定是正六邊形.
B. 正n邊形的對(duì)稱軸不一定有n條.
C. 正n邊形的每一個(gè)外角度數(shù)等于它的中心角度數(shù).
D. 正多邊形一定既是軸對(duì)稱圖形,又是中心對(duì)稱圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一張長(zhǎng)方形紙條上畫(huà)一條數(shù)軸.
(1)若折疊紙條,數(shù)軸上表示﹣3的點(diǎn)與表示1的點(diǎn)重合,則折痕與數(shù)軸的交點(diǎn)表示的數(shù)為;
(2)若經(jīng)過(guò)某次折疊后,該數(shù)軸上的兩個(gè)數(shù)a和b表示的點(diǎn)恰好重合,則折痕與數(shù)軸的交點(diǎn)表示的數(shù)為(用含a,b的代數(shù)式表示);
(3)若將此紙條沿虛線處剪開(kāi),將中間的一段紙條對(duì)折,使其左右兩端重合,這樣連續(xù)對(duì)折n次后,再將其展開(kāi),請(qǐng)分別求出最左端的折痕和最右端的折痕與數(shù)軸的交點(diǎn)表示的數(shù).(用含n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分7分)如圖,已知二次函數(shù)的圖象與x軸負(fù)半軸交于點(diǎn)A(-1,0),與y軸正半軸交與點(diǎn)B,頂點(diǎn)為P,且OB=3OA,一次函數(shù)y=kx+b的圖象經(jīng)過(guò)A、B.
(1)求一次函數(shù)解析式;
(2)求頂點(diǎn)P的坐標(biāo);
(3)平移直線AB使其過(guò)點(diǎn)P,如果點(diǎn)M在平移后的直線上,且,求點(diǎn)M坐標(biāo);
(4)設(shè)拋物線的對(duì)稱軸交x軸與點(diǎn)E,聯(lián)結(jié)AP交y軸與點(diǎn)D,若點(diǎn)Q、N分別為兩線段PE、PD上的動(dòng)點(diǎn),聯(lián)結(jié)QD、QN,請(qǐng)直接寫(xiě)出QD+QN的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,直線交x軸于點(diǎn)C,交y軸于點(diǎn)D,與反比例函數(shù)的圖像交于兩點(diǎn)A、E,AG⊥x軸,垂足為點(diǎn)G,S△AOG=3.
(1)k = ;
(2)求證:AD =CE;
(3)如圖2,若點(diǎn)E為平行四邊形OABC的對(duì)角線AC的中點(diǎn),求平行四邊形OABC的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在10×10正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位長(zhǎng)度.點(diǎn)B、C坐標(biāo)分別為(﹣4,2)、(﹣1,2).
(1)在圖中建立平面直角坐標(biāo)系,寫(xiě)出點(diǎn)A的坐標(biāo);
(2)將△ABC先向下平移4個(gè)單位,再向右平移5個(gè)單位得到△A1B1C1 , 畫(huà)出△A1B1C1 , 并寫(xiě)出點(diǎn)C1的坐標(biāo);
(3)M(a,b)是△ABC內(nèi)的一點(diǎn),△ABC經(jīng)過(guò)某種變換后點(diǎn)M的對(duì)應(yīng)點(diǎn)為M2(a+1,b﹣7),畫(huà)出△A2B2C2 . 并求出△A2B2C2的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com