【題目】用一定數(shù)目的點(diǎn)或大小相同的圓在等距離的排列下可以形成一個(gè)等邊三角形數(shù)陣.古希臘著名數(shù)學(xué)家畢達(dá)哥拉斯用數(shù),,,,,……這些數(shù)量的(石子),都成功的排成了等邊三角形數(shù)陣..
(問題提出)結(jié)果等于多少?
在圖1所示的等邊三角形數(shù)陣中,前行有個(gè)圓圈,前行有個(gè)圓圈,即,前行有個(gè)圓圈,即,…,則前行所有圓圈個(gè)數(shù)總和為
將圖1旋轉(zhuǎn)至圖2,觀察這兩個(gè)三角形數(shù)陣中同一行圓圈個(gè)數(shù)(如第行的圓圈個(gè)數(shù)分別為個(gè),個(gè)),發(fā)現(xiàn)同一行圓圈個(gè)數(shù)之和均為___________個(gè),由此可得兩個(gè)圖前行圓圈個(gè)數(shù)總和為:___________,因此,___________.
(問題延伸)結(jié)果等于多少?
圖3
圖4
在圖3所示的等邊三角形數(shù)陣中,第行圓圈中的數(shù)為,即,第行兩個(gè)圓圈中數(shù)字的和為.即…,第行個(gè)圓圈中數(shù)字的和為(共個(gè)).即.這樣,該三角形數(shù)陣中所有圓圈中數(shù)字的和為.
將該三角形數(shù)陣經(jīng)兩次旋轉(zhuǎn)可得如圖4所示的三個(gè)三角形數(shù)陣,觀察這三個(gè)三角形數(shù)陣中各行同一位置上圓圈中的數(shù)字(如第行的第一個(gè)圓圈中的數(shù)字分別為,,),發(fā)現(xiàn)相同位置上三個(gè)圓圈中數(shù)字之和均為___________,由此可得,這三個(gè)三角形數(shù)陣所有圓圈中數(shù)字的總和為:___________,因此,___________.
(規(guī)律應(yīng)用)
根據(jù)以上發(fā)現(xiàn),計(jì)算:的結(jié)果為___________.
【答案】(問題提出)n+1;n(n+1);;(問題延伸)2n+1; ×(2n+1);(規(guī)律應(yīng)用)1345.
【解析】
(問題提出)根據(jù)圖形可發(fā)現(xiàn)同一行圓圈個(gè)數(shù)之和均為(n+1)個(gè),由此可得兩個(gè)圖前行圓圈個(gè)數(shù)總和為:n(n+1),因此可求出;
(問題延伸)根據(jù)材料可得相同位置上三個(gè)圓圈中數(shù)字之和為++=2n+1,由此可得,這三個(gè)三角形數(shù)陣所有圓圈中數(shù)字的總和為:×(2n+1),因此變形即可求出;
(規(guī)律應(yīng)用)根據(jù)規(guī)律即可化簡(jiǎn)求解.
(問題提出)觀察這兩個(gè)三角形數(shù)陣中同一行圓圈個(gè)數(shù)(如第行的圓圈個(gè)數(shù)分別為個(gè),個(gè)),發(fā)現(xiàn)同一行圓圈個(gè)數(shù)之和均為(n+1)個(gè),由此可得兩個(gè)圖前行圓圈個(gè)數(shù)總和為: n(n+1),因此,,
故答案為:n+1;n(n+1);;
(問題延伸)
∵++=2n+1,
∴相同位置上三個(gè)圓圈中數(shù)字之和為++=2n+1,
∴這三個(gè)三角形數(shù)陣所有圓圈中數(shù)字的總和為:×(2n+1),
∴=
故答案為:2n+1; ×(2n+1);
(規(guī)律應(yīng)用)
=
=
=1345
故答案為:1345.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線與軸交于A、B兩點(diǎn),點(diǎn)P在函數(shù)的圖象上,若△PAB為直角三角形,則滿足條件的點(diǎn)P的個(gè)數(shù)為( ).
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 6個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,過點(diǎn)A作AE⊥BC,垂足為E,連接DE,F(xiàn)為線段DE上一點(diǎn),且∠AFE=∠B.
(1)求證:∠DAF=∠CDE;
(2)求證:△ADF∽△DEC;
(3)若AE=6,AD=8,AB=7,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一坐標(biāo)系中,一次函數(shù)y=﹣mx+n2與二次函數(shù)y=x2+m的圖象可能是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)舉行了百科知識(shí)競(jìng)賽,為了解此次競(jìng)賽成績的情況,隨機(jī)抽取部分參賽學(xué)生的成績,整理并制作出如下不完整的統(tǒng)計(jì)表和統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖表信息解答以下問題:
組別 | 成績分 | 頻數(shù) |
組 | ||
組 | ||
組 | ||
組 |
(1)表中___________.
(2)補(bǔ)全頻數(shù)分布直方圖
(3)計(jì)算扇形統(tǒng)計(jì)圖中“”對(duì)應(yīng)的圓心角度數(shù).
(4)該大學(xué)共有人參加競(jìng)賽,若成績?cè)?/span>分以上(包括分)的為“優(yōu)”等,根據(jù)抽樣結(jié)果,估計(jì)該校參賽學(xué)生成績達(dá)到“優(yōu)”等的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明家想要從某場(chǎng)購買洗衣機(jī)和烘干機(jī)各一臺(tái),現(xiàn)在分別從兩個(gè)品牌中各選中一款洗衣機(jī)和一款烘干機(jī),它們的單價(jià)如表1所示.目前該商場(chǎng)有促銷活動(dòng),促銷方案如表2所示.
表2:商場(chǎng)促銷方案
1. 所有商品均享受8折優(yōu)惠.
2. 所有洗衣機(jī)均可享受節(jié)能減排補(bǔ)
貼,補(bǔ)貼標(biāo)準(zhǔn)為:在折后價(jià)的基礎(chǔ)t.
再減免13%。
3.若同時(shí)購買同品牌洗 衣機(jī)和烘干
機(jī),額外可享受“滿兩件減400元"
則選擇_____品種的洗衣機(jī)和_____品種的烘干機(jī)支付總費(fèi)用最低,支付總費(fèi)用最低為___________元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,線段AB的端點(diǎn)坐標(biāo)為A(-2,4),B(4,2),直線y=kx-2與線段AB有交點(diǎn),則K的值不可能是( )
A. -5B. -2C. 3D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程有兩個(gè)不相等的實(shí)數(shù)根.
(1)求k的取值范圍;
(2)若k取小于1的整數(shù),且此方程的解為整數(shù),則求出此方程的兩個(gè)整數(shù)根;
(3)在(2)的條件下,二次函數(shù)與x軸交于A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)的左側(cè)),D點(diǎn)在此拋物線的對(duì)稱軸上,若∠DAB=60,直接寫出D點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店分兩次購進(jìn)、兩種商品進(jìn)行銷售,兩次購進(jìn)同一種商品的進(jìn)價(jià)相同,具體情況如下表所示:
(1)求、兩種商品每件的進(jìn)價(jià)分別是多少元?
(2)商場(chǎng)決定商品以每件元出售,商品以每件元出售.為滿足市場(chǎng)需求,需購進(jìn)、兩種商品共件,且商品的數(shù)量不少于種商品數(shù)量的倍,請(qǐng)你求出獲利最大的進(jìn)貨方案,并確定最大利潤.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com