如圖1,在平面直角坐標系中,直線AB與軸交于點A,與軸交于點B,與直線OC:交于點C.

(1)若直線AB解析式為,

①求點C的坐標;

②求△OAC的面積.

(2)如圖2,作的平分線ON,若AB⊥ON,垂足為E, OA=4,P、Q分別為線段OA、OE上的動點,連結(jié)AQ與PQ,試探索AQ+PQ是否存在最小值?若存在,求出這個最小值;若不存在,說明理由.


(1)①C(4,4);②12;(2)存在,3

【解析】

(1)①由題意, 

解得所以C(4,4);

②把代入得,,所以A點坐標為(6,0),

所以

(2)由題意,在OC上截取OM=OP,連結(jié)MQ

考點:一次函數(shù)的綜合題


練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:


某校初三年級“數(shù)學興趣小組”實地測量操場旗桿的高度.旗桿的影子落在操場和操場邊的土坡上,如圖所示,測得在操場上的影長BC=20 m,斜坡上的影長CD=2m,已知斜坡CD與操場平面的夾角為45°,同時測得身高l.65m的學生在操場 上的影長為3.3 m.求旗桿AB的高度。(結(jié)果精確到1m)

  (提示:同一時刻物高與影長成正比.參考數(shù)據(jù):≈1.414.≈1.732.≈2.236)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


 如圖,拋物線關(guān)于直線對稱,與坐標軸交于A、B、C三點,且AB=4,點D在拋物線上,直線是一次函數(shù)的圖象,點O是坐標原點。

(1)求拋物線的解析式;

(2)把拋物線向左平移1個單位,再向上平移4個單位,所得拋物線與直線交于M、N兩點,問在y軸負半軸上是否存在一定點P,使得不論k取何值,直線PM與PN總是關(guān)于y軸對稱?若存在,求出P點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,在平面直角坐標系xOy中,拋物線交y軸于點C,對稱軸與x軸交于點D, 設點P(x,y)是該拋物線在x軸上方的一個動點(與點C不重合),△PCD的面積為S,求S關(guān)于x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


 如下圖所示,已知等腰梯形ABCD,AD∥BC,AD=2,BC=6,AB=DC=,若動直線l垂直于BC,且從經(jīng)過點B的位置向右平移,直至經(jīng)過點C的位置停止,設掃過的陰影部分的面積為S,BP為x,則S關(guān)于x的函數(shù)關(guān)系式是          。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖(1),Rt△ABC和Rt△EFD中,AC與DE重合,AB=EF=1,∠BAC=∠DEF=90º,∠ ACB=∠EDF=30º,固定△ABC,將△DEF繞點A順時針旋轉(zhuǎn),當DF邊與AB邊重合時,旋轉(zhuǎn)中止,F(xiàn)不考慮旋轉(zhuǎn)開始和結(jié)束時重合的情況,設DE,DF(或它們的延長線)分別交BC(或它的延長線) 于G,H點,如圖(2)

(1)問:始終與△AGC相似的三角形是     ;

(2)設CG=x,BG=y,求y關(guān)于x的函數(shù)關(guān)系式;

(3)問:當x為何值時,△HGA是等腰三角形。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,在平面坐標系中,直線y=﹣x+2與x軸,y軸分別交于點A,點B,動點P(a,b)在第一象限內(nèi),由點P向x軸,y軸所作的垂線PM,PN(垂足為M,N)分別與直線AB相交于點E,點F,當點P(a,b)運動時,矩形PMON的面積為定值2.當點E,F(xiàn)都在線段AB上時,由三條線段AE,EF,BF組成一個三角形,記此三角形的外接圓面積為S1,△OEF的面積為S2。試探究:是否存在最大值?若存在,請求出該最大值;若不存在,請說明理由。

                                                              

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,A、B兩點的坐標分別是(8,0)、(0,6),點P由點B出發(fā)沿BA方向向點A作勻速直線運動,速度為每秒3個單位長度,點Q由A出發(fā)沿AO(O為坐標原點)方向向點O作勻速直線運動,速度為每秒2個單位長度,連接PQ,若設運動時間為t(0<t<)秒.解答如下問題:

(1)當t為何值時,PQ∥BO?

(2)設△AQP的面積為S,

①求S與t之間的函數(shù)關(guān)系式,并求出S的最大值;

若我們規(guī)定:點P、Q的坐標分別為(x1,y1),(x2,y2),則新坐標(x2﹣x1,y2﹣y1)稱為“向量PQ”的坐標.當S取最大值時,求“向量PQ”的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,在直角坐標系中,點A的坐標為(8,0),點 B(t,b)在直線y=b上運動,點D、E、F分別為OB、OA、AB的中點,其中b是大于零的常數(shù)。設直線y=b與y軸交于點C,問:四邊形DEFB能不能是矩形?若能,求出t的值;若不能,說明理由。

查看答案和解析>>

同步練習冊答案