如圖,在平行四邊形ABCD中,∠DAB=60°,AB=2AD,點(diǎn) E、F分別是AB、CD的中點(diǎn),過點(diǎn)A作AG∥BD,交CB的延長線于點(diǎn)G.
(1)求證:四邊形DEBF是菱形;
(2)請(qǐng)判斷四邊形AGBD是什么特殊四邊形?并加以證明.
(1)證明:∵四邊形ABCD是平行四邊形,
∴AB∥CD且AB=CD,AD∥BC且AD=BC.
E,F(xiàn)分別為AB,CD的中點(diǎn),
∴BE=AB,DF=CD,
∴BE=BF,
∴四邊形DEBF是平行四邊形
在△ABD中,E是AB的中點(diǎn),
∴AE=BE=AB=AD,
而∠DAB=60°,
∴△AED是等邊三角形,即DE=AE=AD,
故DE=BE.
∴平行四邊形DEBF是菱形.
(2)【解析】
四邊形AGBD是矩形,理由如下:
∵AD∥BC且AG∥DB,
∴四邊形AGBD是平行四邊形.
由(1)的證明知AD=DE=AE=BE,
∴∠ADE=∠DEA=60°,
∠EDB=∠DBE=30°.
故∠ADB=90°.
∴平行四邊形AGBD是矩形.
【解析】
(1)利用平行四邊形的性質(zhì)證得△AED是等邊三角形,從而證得DE=BE,問題得證;
(2)利用平行四邊形的性質(zhì)證得∠ADB=90°,利用有一個(gè)角是直角的平行四邊形是矩形判定矩形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:青島版八年級(jí)下6.2平行四邊形的判定 題型:選擇題
如圖,已知△ABC,分別以A,C為圓心,BC,AB長為半徑畫弧,兩弧在直線BC上方交于點(diǎn)D,連接AD,CD,則有( )
A.∠ADC與∠BAD相等
B.∠ADC與∠BAD互補(bǔ)
C.∠ADC與∠ABC互補(bǔ)
D.∠ADC與∠ABC互余
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:青島版八年級(jí)下6.3特殊的平行四邊形 題型:選擇題
如圖,已知矩形ABCD中,AC與BD相交于O,DE平分∠ADC交BC于E,∠BDE=15°,則∠COE的度數(shù)為( )
A.75° B.85° C.90° D.65°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:青島版八年級(jí)下6.3特殊的平行四邊形 題型:填空題
如圖,矩形ABCD的兩條線段交于點(diǎn)O,過點(diǎn)O作AC的垂線EF,分別交AD、BC于點(diǎn)E、F,連接CE,已知△CDE的周長為24cm,則矩形ABCD的周長是_______cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:青島版八年級(jí)下6.3特殊的平行四邊形 題型:填空題
如圖,菱形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,且AC=8,BD=6,過點(diǎn)O作OH丄AB,垂足為H,則點(diǎn)O到邊AB的距離OH=_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:青島版八年級(jí)下6.3特殊的平行四邊形 題型:解答題
已知:如圖,在△ABC中,D是AC的中點(diǎn),E是線段BC延長線上一點(diǎn),過點(diǎn)A作BE的平行線與線段ED的延長線交于點(diǎn)F,連接AE,CF.
(1)求證:AF=CE;
(2)若AC=EF,試判斷四邊形AFCE是什么樣的四邊形,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:青島版八年級(jí)下6.4三角形的中位線 題型:選擇題
如圖DE是△ABC的中位線,F(xiàn)是DE的中點(diǎn),CF的延長線交AB于點(diǎn)G,則AG:GD等于( )
A.2:1 B.3:1 C.3:2 D.4:3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com