在直角三角形ABC中,,是斜邊AB的中點(diǎn),過(guò),連結(jié);過(guò),連結(jié);過(guò),…,如此繼續(xù),可以依次得到點(diǎn),…,,分別記,,,…,的面積為,,,…,則.

 
SABC

試題分析:由于,是斜邊AB的中點(diǎn), ,易知D1E1∥BC,
∴△BD1E1與△CD1E1同底同高,面積相等,以此類推;
∴S1=SD1E1A=SABC,
根據(jù)直角三角形的性質(zhì)以及相似三角形的性質(zhì)可知:D1E1=BC,CE1=AC,S1=SABC;
∴在△ACB中,D2為其重心,
又D1E1為三角形的中位線,∴D1E1∥BC,
∴△D2D1E1∽△CD2B,且相似比為1:2,
=,
∴D2E1=BE1,
∴D2E2=BC,CE2=AC,S2=SABC,
∴D3E3=BC,CE3=AC,S3=SABC…;
∴Sn=SABC
故答案是SABC
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

理解與應(yīng)用
小明在學(xué)習(xí)相似三角形時(shí),在北京市義務(wù)教育課程改革實(shí)驗(yàn)教材第17冊(cè)書(shū),第37頁(yè)遇到這樣一道題:

如圖1,在△ABC中,P是邊AB上的一點(diǎn),聯(lián)結(jié)CP.
要使△ACP∽△ABC,還需要補(bǔ)充的一個(gè)條件是____________,或_________.
請(qǐng)回答:
(1)小明補(bǔ)充的條件是____________________,或_________________.
(2)請(qǐng)你參考上面的圖形和結(jié)論,探究、解答下面的問(wèn)題:
如圖2,在△ABC中,∠A=60°,AC2= AB2+AB.BC.求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知∠AOB=90°,OM是∠AOB的平分線,按以下要求解答問(wèn)題:
(1)如圖1,將三角板的直角頂點(diǎn)P在射線OM上移動(dòng),兩直角邊分別與OA,OB交于點(diǎn)C,D.

①比較大。篜C______PD. (選擇“>”或“<”或“=”填空);
②證明①中的結(jié)論.
(2)將三角板的直角頂點(diǎn)P在射線OM上移動(dòng),一直角邊與邊OA交于點(diǎn)C,且OC=1,另一直角邊與直線OB,直線OA分別交于點(diǎn)D,E,當(dāng)以P,C,E為頂點(diǎn)的三角形與△OCD相似時(shí),試求的長(zhǎng).(提示:請(qǐng)先在備用圖中畫(huà)出相應(yīng)的圖形,再求的長(zhǎng)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直角梯形OABC中,OA∥BC,A、B兩點(diǎn)的坐標(biāo)分別為A(13,0),B(11,12),動(dòng)點(diǎn)P,Q分別從O、B兩點(diǎn)同時(shí)出發(fā),點(diǎn)P以每秒2個(gè)單位的速度沿OA向終點(diǎn)A運(yùn)動(dòng),點(diǎn)Q以每秒1個(gè)單位的速度沿BC向C運(yùn)動(dòng),當(dāng)點(diǎn)P停止運(yùn)動(dòng)時(shí),點(diǎn)Q同時(shí)停止運(yùn)動(dòng).線段OB、PQ相交于點(diǎn)D,過(guò)點(diǎn)D作DE∥OA,交AB于點(diǎn)E,設(shè)動(dòng)點(diǎn)P、Q運(yùn)動(dòng)時(shí)間為t(單位:s)

(1)當(dāng)t為何值時(shí),四邊形PABQ是平行四邊形,請(qǐng)寫(xiě)出推理過(guò)程;
(2)通過(guò)推理論證:在P、Q的運(yùn)動(dòng)過(guò)程中,線段DE的長(zhǎng)度不變;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,若以原點(diǎn)為位似中心,將五邊形AEDCB放大,使放大后的五邊形的邊長(zhǎng)是原五邊形對(duì)應(yīng)邊長(zhǎng)的3倍,請(qǐng)?jiān)谙聢D網(wǎng)格中畫(huà)出放大后的五邊形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知.如圖,點(diǎn)D、E分別是在AB,AC上,.求證:DE∥BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

觀察計(jì)算:
當(dāng)時(shí),的大小關(guān)系是_________________.
當(dāng)時(shí),的大小關(guān)系是_________________.
探究證明:
如圖所示,為圓O的內(nèi)接三角形,為直徑,過(guò)C作于D,設(shè),BD=b.

(1)分別用表示線段OC,CD­;
(2)探求OC與CD表達(dá)式之間存在的關(guān)系(用含a,b的式子表示).
歸納結(jié)論:
根據(jù)上面的觀察計(jì)算、探究證明,你能得出的大小關(guān)系是:______________.
實(shí)踐應(yīng)用:
要制作面積為4平方米的長(zhǎng)方形鏡框,直接利用探究得出的結(jié)論,求出鏡框周長(zhǎng)的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

,則(     )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

,則=__________.

查看答案和解析>>

同步練習(xí)冊(cè)答案