如圖,在直角梯形ABCD中,∠B=90°,AD∥BC,且AD=4cm,AB=6cm,DC=10cm.若動(dòng)點(diǎn)P從A點(diǎn)出發(fā),以每秒4cm的速度沿線段AD、DC向C點(diǎn)運(yùn)動(dòng);動(dòng)點(diǎn)Q從C點(diǎn)出發(fā)以每秒5cm的速度沿CB精英家教網(wǎng)向B點(diǎn)運(yùn)動(dòng).當(dāng)Q點(diǎn)到達(dá)B點(diǎn)時(shí),動(dòng)點(diǎn)P、Q同時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)P、Q同時(shí)出發(fā),并運(yùn)動(dòng)了t秒,
(1)直角梯形ABCD的面積為
 
cm2
(2)當(dāng)t=
 
秒時(shí),四邊形PQCD成為平行四邊形?
(3)當(dāng)t=
 
秒時(shí),AQ=DC;
(4)是否存在t,使得P點(diǎn)在線段DC上且PQ⊥DC?若存在,求出此時(shí)t的值;若不存在,說(shuō)明理由.
分析:(1)作DM⊥BC于點(diǎn)M,在直角△CDM中,根據(jù)勾股定理即可求得CM,得到下底邊的長(zhǎng),根據(jù)梯形面積公式即可求解.
(2)當(dāng)PD=CQ時(shí),四邊形PQCD成為平行四邊形.
(3)在直角△ABQ中利用勾股定理即可求解.
(4)連接QD,根據(jù)S△DQC=S△DQC,即可求解.
解答:精英家教網(wǎng)解:(1)作DM⊥BC于點(diǎn)M.則四邊形ABMD是平行四邊形
∴DM=AB=6cm.
在直角△CDM中,CM=
CD2-DM2
=8cm
∴BC=BM+CM=4+8=12cm
∴直角梯形ABCD的面積為
1
2
(AD+BC)•AB=48cm2

(2)當(dāng)PD=CQ時(shí),四邊形PQCD成為平行四邊形
即4-4t=5t
解得t=
4
9
;

(3)BQ=12-5t
在直角△ABQ中,AB2+BQ2=AQ2
即62+(12-5t)2=102
解得t=
4
5
;

(4)存在,t=
7
4

連接QD,則CP=14-4t,CQ=5t
若QP⊥CD,則2S△DQC=CQ×AB=CD×QP
得QP=3t精英家教網(wǎng)
在Rt△QPC中
QP2+PC2=CQ2,即(3t)2+(14-4t)2=(5t)2
解之得t=
7
4

求得BC=12
CP=14-4t=7<10
CQ=5t=
35
4
<12
所以,存在t,使得P點(diǎn)在線段DC上,且PQ⊥DC.
點(diǎn)評(píng):本題綜合考查了平行四邊形的判定方法,梯形的計(jì)算,梯形問(wèn)題一般通過(guò)作高線轉(zhuǎn)化為三角形與平行四邊形的問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,在直角梯形ABCD中,AD∥BC,CD⊥BC,E為BC邊上的點(diǎn).將直角梯形ABCD沿對(duì)角線BD折疊,使△ABD與△EBD重合(如圖中陰影所示).若∠A=130°,AB=4cm,則梯形ABCD的高CD≈
3.1
cm.(結(jié)果精確到0.1cm)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F(xiàn)點(diǎn)以2cm/秒的速度在線段AB上由A向B勻速運(yùn)動(dòng),E點(diǎn)同時(shí)以1cm/秒的速度在線段BC上由B向C勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(0<t<5).
(1)求證:△ACD∽△BAC;
(2)求DC的長(zhǎng);
(3)設(shè)四邊形AFEC的面積為y,求y關(guān)于t的函數(shù)關(guān)系式,并求出y的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1998•大連)如圖,在直角梯形ABCD中.AD∥BC,DC⊥BC,且BC=3AD.以梯形的高AE為直徑的⊙O交AB于點(diǎn)F,交CD于點(diǎn)G、H.過(guò)點(diǎn)F引⊙O的切線交BC于點(diǎn)N.
(1)求證:BN=EN;
(2)求證:4DH•HC=AB•BF;
(3)設(shè)∠GEC=α.若tan∠ABC=2,求作以tanα、cotα為根的一元二次方程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角梯形ABCD中,DC∥AB,∠ADC=90°,AB=3a,CD=2a,AD=2,點(diǎn)E、F分別是腰AD、BC上的動(dòng)點(diǎn),點(diǎn)G在AB上,且四邊形AEFG是矩形.設(shè)FG=x,矩形AEFG的面積為y.
(1)求y與x之間的函數(shù)關(guān)式,并寫出自變量x的取值范圍;
(2)在腰BC上求一點(diǎn)F,使梯形ABCD的面積是矩形AEFG的面積的2倍,并求出此時(shí)BF的長(zhǎng);
(3)當(dāng)∠ABC=60°時(shí),矩形AEFG能否為正方形?若能,求出其邊長(zhǎng);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角梯形ABCD中,AB∥CD,∠C=90°,AB=6cm,CD=10cm,AD=5cm,動(dòng)點(diǎn)P、Q分別從點(diǎn)A、C同時(shí)出發(fā),點(diǎn)P以2cm/s的速度向點(diǎn)B移動(dòng),點(diǎn)Q以1cm/s的速度向點(diǎn)D移動(dòng),當(dāng)一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí)另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).
(1)經(jīng)過(guò)幾秒鐘,點(diǎn)P、Q之間的距離為5cm?
(2)連接PD,是否存在某一時(shí)刻,使得PD恰好平分∠APQ?若存在,求出此時(shí)的移動(dòng)時(shí)間;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案