【題目】小花家在裝修客廳時,購進(jìn)彩色地磚和原色地磚共120塊,一共花費了8700元.已知原色地磚的價錢是60/塊,彩色地磚的價錢是110/塊.

(1)兩種型號的地磚各采購了多少塊?

(2)如果廚房也要鋪這兩種型號的地磚共70塊,且采購費用不超過4400元,那么彩色地磚最多能采購多少塊?

【答案】(1)彩色地磚采購了30塊,原色地磚采購了90;(2)彩色地磚最多能采購4塊.

【解析】

(1)設(shè)彩色地磚采購x塊,原色地磚采購y塊,根據(jù)彩色地磚和原色地磚的總價為8700及地磚總數(shù)為120建立二元一次方程組求出其解即可;
(2)設(shè)彩色地磚采購了m塊,則原色地磚采購了(70m)塊,根據(jù)采購地磚的費用不超過4400元建立不等式,求出其解即可.

解:(1)設(shè)彩色地磚采購了x塊,原色地磚采購了y塊,

根據(jù)題意得:

解得:

答:彩色地磚采購了30塊,原色地磚采購了90塊.

(2)設(shè)彩色地磚采購了m塊,則原色地磚采購了(70﹣m)塊,

根據(jù)題意得:110m+60(70﹣m)≤4400,

解得:m≤4.

答:彩色地磚最多能采購4塊.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD的對角線ACBD交于點O,則下列不能判斷四邊形ABCD是平行四邊形的條件是( 。

A. OA=OCADBC B. ABC=ADC,ADBC

C. AB=DC,AD=BC D. ABD=ADB,BAO=DCO

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市為解決部分市民冬季集中取暖問題需鋪設(shè)一條長3000米的管道,為盡量減少施工對交通造成的影響,實施施工時“…”,設(shè)實際每天鋪設(shè)管道x米,則可得方程 ,根據(jù)此情景,題中用“…”表示的缺失的條件應(yīng)補(bǔ)為(
A.每天比原計劃多鋪設(shè)10米,結(jié)果延期15天才完成
B.每天比原計劃少鋪設(shè)10米,結(jié)果延期15天才完成
C.每天比原計劃多鋪設(shè)10米,結(jié)果提前15天才完成
D.每天比原計劃少鋪設(shè)10米,結(jié)果提前15天才完成

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,對角線ACBD相交于點O,EBC上一點,CE=5,F(xiàn)DE的中點.CEF的周長為18,則OF的長為( )

A. 3 B. 4 C. 2.5 D. 3.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE.將ADE沿AE對折至AFE,延長EF交邊BC于點G,連接AG、CF.則下列結(jié)論:①△ABG≌△AFG;②BG=CG;③AGCF;④SEGC=SAFE;⑤∠AGB+∠AED=145°.其中正確的個數(shù)是( )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是邊長為a的正方形,點G,E分別是邊AB,BC的中點,∠AEF=90°,且EF交正方形外角的平分線CF于點F.

(1)證明:∠BAE=FEC;

(2)證明:AGE≌△ECF;

(3)求AEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù) 的圖象與一次函數(shù)y2=ax+b的圖象交于點A(1,4)和點B(m,﹣2),
(1)求這兩個函數(shù)的關(guān)系式;
(2)觀察圖象,寫出使得y1>y2成立的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工程交由甲、乙兩個工程隊來完成,已知甲工程隊單獨完成需要60天,乙工程隊單獨完成需要40

(1)若甲工程隊先做30天后,剩余由乙工程隊來完成,還需要用時   

(2)若甲工程隊先做20天,乙工程隊再參加,兩個工程隊一起來完成剩余的工程,求共需多少天完成該工程任務(wù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:

(1)4x+3(2x﹣3)=12﹣(x﹣4)

(2)

(3)

查看答案和解析>>

同步練習(xí)冊答案