【題目】如圖,已知AB是⊙O的直徑,點(diǎn)P為圓上一點(diǎn),點(diǎn)C為AB延長(zhǎng)線上一點(diǎn),PA=PC,∠C=30°.

(1)求證:CP是⊙O的切線.
(2)若⊙O的直徑為8,求陰影部分的面積.

【答案】
(1)證明:連接OP,如圖所示:

∵PA=PC,∠C=30°,

∴∠A=∠C=30°,

∴∠APC=120°,

∵OA=OP,

∴∠OPA=∠A=30°,

∴∠OPC=120°﹣30°=90°,

即OP⊥CP,

∴CP是⊙O的切線


(2)解:∵AB是⊙O的直徑,

∴∠APB=90°,

∴∠OBP=90°﹣∠A=60°,

∵OP=OB=4,

∴△OBP是等邊三角形,

∴∠POC=60°,

∵OP⊥CP,

∴∠C=30°,

∴OC=2OP=2OB=8,

∴PC= = =4

∴陰影部分的面積=扇形OBP的面積﹣△OBP的面積= × ×4×4 = ﹣4


【解析】(1)連接OP利用等腰三角形的性質(zhì)及三角形的內(nèi)角和求出∠OPC=120°﹣30°=90°得CP是⊙O的切線;(2)利用直徑所對(duì)的圓周角是直角及同圓的半徑相等得△OBP是等邊三角形,再由勾股定理得PC得長(zhǎng)度,最后用陰影部分的面積=扇形OBP的面積﹣△OBP的面積即可。
【考點(diǎn)精析】根據(jù)題目的已知條件,利用三角形的內(nèi)角和外角和勾股定理的概念的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握三角形的三個(gè)內(nèi)角中,只可能有一個(gè)內(nèi)角是直角或鈍角;直角三角形的兩個(gè)銳角互余;三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和;三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某奶茶店開(kāi)業(yè)大酬賓推出四款飲料.1千克A飲料的原料是2千克蘋(píng)果,3千克梨,1千克西瓜;1千克B飲料的原料是2千克蘋(píng)果,3千克梨,1千克西瓜;1千克C飲料的原料是3千克蘋(píng)果,9千克梨,6千克西瓜;1千克D飲料的原料是2千克蘋(píng)果,6千克梨,4千克西瓜;如果每千克蘋(píng)果的成本價(jià)為2元,每千克梨的成本價(jià)為元,每千克西瓜的成本價(jià)為元.開(kāi)業(yè)當(dāng)天全部售罄,銷(xiāo)售后,共計(jì)蘋(píng)果的總成本為100元,并且梨的總成本為126元,那么西瓜的總成本為_____元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小林在某商店購(gòu)買(mǎi)商品A、B共三次,只有一次購(gòu)買(mǎi)時(shí),商品A、B同時(shí)打折(折扣相同),其余兩次均按標(biāo)價(jià)購(gòu)買(mǎi).三次購(gòu)買(mǎi)商品A、B的數(shù)量和費(fèi)用如下表:

購(gòu)買(mǎi)商品A的數(shù)量/個(gè)

購(gòu)買(mǎi)商品B的數(shù)量/個(gè)

購(gòu)買(mǎi)總費(fèi)用/

第一次購(gòu)物

6

5

1140

第二次購(gòu)物

3

7

1110

第三次購(gòu)物

9

8

1062

(1)小林以折扣價(jià)購(gòu)買(mǎi)商品A、B是第 次購(gòu)物;

(2)求出商品A、B的標(biāo)價(jià);

(3)若商品A、B的折扣相同,問(wèn)商店是打幾折出售這兩種商品的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:正方形ABCD的邊長(zhǎng)為8,點(diǎn)EF分別在AD、CD上,AEDF2,BEAF相交于點(diǎn)G,點(diǎn)HBF的中點(diǎn),連接GH,則GH的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AM∥BN,∠A=60°,點(diǎn)P是射線M上一動(dòng)點(diǎn)(與點(diǎn)A不重合),BC,BD分別平分∠ABP和∠PBN,分別交射線AM于點(diǎn)C,D.

(1)∠CBD=   

(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到某處時(shí),∠ACB=∠ABD,則此時(shí)∠ABC=   

(3)在點(diǎn)P運(yùn)動(dòng)的過(guò)程中,∠APB與∠ADB的比值是否隨之變化?若不變,請(qǐng)求出這個(gè)比值:若變化,請(qǐng)找出變化規(guī)律.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,點(diǎn)E,F分別在邊ABCD上,點(diǎn)G、H在對(duì)角線AC上,AG=CH,BE=DF

1)求證:四邊形EGFH是平行四邊形;

2)若EG=EH,AB=8BC=4.求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為點(diǎn)D,若AD=BC,則sin∠A=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,隧道的截面由拋物線和長(zhǎng)方形構(gòu)成,長(zhǎng)方形的長(zhǎng)是8m,寬是2m,拋物線的最高點(diǎn)到路面的距離為6米.

(1)按如圖所示建立平面直角坐標(biāo)系,求表示該拋物線的函數(shù)表達(dá)式;
(2)一輛貨運(yùn)卡車(chē)高為4m,寬為2m,如果該隧道內(nèi)設(shè)雙向車(chē)道,那么這輛貨車(chē)能否安全通過(guò)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線 CB 和射線 OACB//OA,點(diǎn) B 在點(diǎn) C 的右側(cè).且滿(mǎn)足∠OCB=∠OAB100°,連接線段 OB,點(diǎn) E、F 在直線 CB 上,且滿(mǎn)足∠FOB=∠AOB,OE平分∠COF.

(1)求∠BOE

(2)當(dāng)點(diǎn) E、F 在線段 CB 上時(shí)(如圖 1),∠OEC 與∠OBA 的和是否是定值?若是,求出這個(gè)值;若不是,說(shuō)明理由。

(3)如果平行移動(dòng) AB,點(diǎn) EF 在直線 CB 上的位置也隨之發(fā)生變化.當(dāng)點(diǎn) E、F 在點(diǎn) C 左側(cè)時(shí),∠OEC 和∠OBA 之間的數(shù)量關(guān)系是否發(fā)生變化?若不變,說(shuō)明理由;若變化,求出他們之間的關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案