【題目】如圖,已知平行四邊形中,的中點,連接并延長,交的延長線于點

1)求證:;

2)連接,當_______°時,四邊形是正方形?

【答案】1)見解析;(245

【解析】

1)根據(jù)平行線的性質(zhì)可得∠D=∠OCE,∠DAO=∠E,再根據(jù)中點定義可得DOCO,然后可利用AAS證明△AOD≌△EOC

2)當∠B=∠AEB45°時,四邊形ACED是正方形,首先證明四邊形ACED是平行四邊形,再證對角線互相垂直且相等可得四邊形ACED是正方形.

1)∵四邊形ABCD是平行四邊形,

ADBC

∴∠D=∠OCE,∠DAO=∠E

OCD的中點,

OCOD,

在△ADO和△ECO中,

,

∴△AOD≌△EOCAAS);

2)當∠B=∠AEB45°時,四邊形ACED是正方形.

∵△AOD≌△EOC

OAOE

又∵OCOD,

∴四邊形ACED是平行四邊形.

∵∠B=∠AEB45°

ABAE,∠BAE90°

∵四邊形ABCD是平行四邊形,

ABCDABCD

∴∠COE=∠BAE90°

ACED是菱形.

ABAE,ABCD,

AECD

∴菱形ACED是正方形.

故答案為:45

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=3,BC=4M、N在對角線AC上,且AM=CN,E、F分別是AD、BC的中點.

1)求證:△ABM≌△CDN

2)點G是對角線AC上的點,∠EGF=90°,求AG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,EBC的中點,連接AE并延長交DC的延長線于點F.

(1)求證:AB=CF;

(2)連接DE,若AD=2AB,求證:DEAF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點D、E分別在錢段ABAC上,CDBE交于O,已知ABAC,現(xiàn)添加以下的哪個條件仍不能判定ABE≌△ACD

A. B=∠CB. ADAEC. BECDD. BDCE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的一元二次方程(k-1)x2+2kx+2=0

(1)求證:無論k為何值,方程總有實數(shù)根.

(2)設x1,x2是該方程的兩個根,記Sx1x2-x1x2S的值能為0嗎?若能,求出此時k的值.若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖1,在一塊寬為12m,長為20m的矩形地面上修筑同樣寬的道路,余下的部分種上草坪.要使草坪的面積為180m2,求道路的寬;

(2)現(xiàn)在對該矩形區(qū)域進行改造,如圖2,在正中央建一個與矩形的邊互相平行的正方形觀賞亭,觀賞亭的四邊連接四條與矩形的邊互相平行的且寬度相等的道路,已知道路的寬為正方形邊長的若道路與觀賞亭的面積之和是矩形面積的,求道路的寬

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在菱形ABCD 中,點E,O,F分別是邊ABAC,AD的中點,連接CE、CFOE、OF.當ABBC滿足___________條件時,四邊形AEOF正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A、B兩點的坐標分別為(40,0)和(0,30),動點P從點A開始在線段AO上以每秒2個長度單位的速度向原點O運動、動直線EFx軸開始以每秒1個單位的速度向上平行移動(即EF∥x軸),并且分別與y軸、線段AB交于點E、F,連接EP、FP,設動點P與動直線EF同時出發(fā),運動時間為t秒.

(1)求t=15時,△PEF的面積;

(2)直線EF、點P在運動過程中,是否存在這樣的t,使得△PEF的面積等于160(平方單位)?若存在,請求出此時t的值;若不存在,請說明理由.

(3)當t為何值時,△EOP與△BOA相似.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的角平分線,點,分別在,上,且,

1)求證:四邊形是平行四邊形;

2)若,,求平行四邊形的面積.

查看答案和解析>>

同步練習冊答案