【題目】如圖,在中,,.
(1)如圖1,若直線與相交于,過點作于,連接并延長至,使得,過點作于,證明:.
(2)如圖2,若直線與的延長線相交于,過點作于,連接并延長至,使得,過點作交的延長線于,探究:、、之間的數(shù)量關(guān)系,并證明.
【答案】(1)見解析(2)AD+BD=EF,證明見解析
【解析】
(1)根據(jù)△ABC為等腰直角三角形,把△ABD逆時針旋轉(zhuǎn)90°至△ACG,得到BD=GC,再延長GC交DE于H點,根據(jù)AD⊥BE可證四邊形ADHG為正方形,得到AD=GH,再證明△DEF≌△DCH,得到EF=CH,則可證明;
(2)作CM⊥DA,先證明△DEF≌△CDM,得到EF=DM,再證明△ADB≌△CMA,得到BD=AM,根據(jù)AD+AM=DM=EF即可求解.
(1)如圖,∵,.
∴△ABC為等腰直角三角形,
把△ABD逆時針旋轉(zhuǎn)90°至△ACG,
∴BD=CG,
延長GC交DE于H點,
∵AD⊥BE,∠DAG=90°=∠AGC,AD=AG,
∴四邊形ADHG為正方形,
故∠DHC=90°,
∴AD=GH,
∵,,∠EDF=∠CDH
∴△DEF≌△DCH,
∴EF=CH,
∴;
(2)AD+BD=EF,理由如下:
如圖,作CM⊥DA,
∵AD⊥BE,
∴∠1+∠2=90°,
∵∠DCM+∠2=90°
∴∠1=∠DCM
∵∠F=∠DMC=90°,DE=DC
∴△DEF≌△CDM,
∴EF=DM,
∵.
∴∠DAB+∠MAC=90°,
又∠DAB+∠DBA=90°
∴∠MAC=∠DBA
又AB=AC
∴△ADB≌△CMA,
∴BD=AM,
∴AD+BD=AD+AM=DM=EF
即AD+BD=EF,
科目:初中數(shù)學 來源: 題型:
【題目】(2017四川省達州市,第16題,3分)如圖,矩形ABCD中,E是BC上一點,連接AE,將矩形沿AE翻折,使點B落在CD邊F處,連接AF,在AF上取點O,以O為圓心,OF長為半徑作⊙O與AD相切于點P.若AB=6,BC=,則下列結(jié)論:①F是CD的中點;②⊙O的半徑是2;③AE=CE;④.其中正確結(jié)論的序號是__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長為1,格點三角形(頂點是網(wǎng)格線的交點的三角形)ABC的頂點A,C的坐標分別為(﹣4,5),(﹣1,3).
(1)請在如圖所示的網(wǎng)格平面內(nèi)作出平面直角坐標系;并寫出B點坐標;
(2)請作出△ABC關(guān)于y軸對稱的△A'B'C';
(3)請作出將△ABC向下平移的3個單位,再向右平移5個單位后的△A1B1C1;則點A1的坐標為_____;點B1的坐標為______,
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將拋物線c1: 沿x軸翻折,得到拋物線c2,如圖1所示.
(1)請直接寫出拋物線c2的表達式;
(2)現(xiàn)將拋物線c1向左平移m個單位長度,平移后得到新拋物線的頂點為M,與x軸的交點從左到右依次為A、B;將拋物線c2向右也平移m個單位長度,平移后得到新拋物線的頂點為N,與軸的交點從左到右依次為D、E.
①當B、D是線段AE的三等分點時,求m的值;
②在平移過程中,是否存在以點A、N、E、M為頂點的四邊形是矩形的情形?若存在,請求出此時m的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)的圖象與軸交于、兩點,與軸交于點,點的坐標為,且當和時二次函數(shù)的函數(shù)值相等.
()求實數(shù)、的值.
()如圖,動點、同時從點出發(fā),其中點以每秒個單位長度的速度沿邊向終點運動,點以每秒個單位長度的速度沿射線方向運動,當點停止運動時,點隨之停止運動.設(shè)運動時間為秒.連接,將沿翻折,使點落在點處,得到.
①是否存在某一時刻,使得為直角三角形?若存在,求出的值;若不存在,請說明理由.
②設(shè)與重疊部分的面積為,求關(guān)于的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形中,,,是的中點,連結(jié)并延長交的延長線于點.
圖中可以由________繞點________旋轉(zhuǎn)________后得到;
若,,,求的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,剪兩張對邊平行且寬度相等的紙條隨意交叉疊放在一起,轉(zhuǎn)動其中一張,重合部分構(gòu)成一個四邊形,則下列結(jié)論中不一定成立的是( 。
A. ∠ABC=∠ADC,∠BAD=∠BCD B. AB=BC
C. AB=CD,AD=BC D. ∠DAB+∠BCD=180°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小迪同學在學勾股定理時發(fā)現(xiàn)一類特殊三角形:在一個三角形中,如果一個角是另一個角的2倍,那么稱這個三角形為“倍角三角形”.
如圖1,在倍角中,,、、的對邊分別記為,,,三角形的三邊,,有什么關(guān)系呢?讓我們一起來探索……
(1)已知“倍角三角形”的一個內(nèi)角為,則這個三角形的另兩個角的度數(shù)分別為______
(2)小迪同學先從特殊的“倍角三角形”入手研究,請你結(jié)合圖2和圖3填寫下表:
三角形 | 角的已知量 | ||
圖2 | ______ | ______ | |
圖3 | ______ |
小迪同學根據(jù)上表,提出一般性猜想:在“倍角三角形”中,,那么,,三邊滿足:______;
(3)如圖1:在倍角三角形中,,、、的對邊分別記為,,,求證:.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是等邊三角形,點、分別在、上,且,,、相交于點,連接,則下列結(jié)論:①;②;③;④,正確的結(jié)論有( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com