【題目】如圖,已知正方形DEFG的頂點D、EABC的邊BC上,頂點G、F分別在邊AB、AC上.如果BC=4,ABC的面積是6,那么這個正方形的邊長是_____

【答案】

【解析】AHBCH,交GFM,如圖,先利用三角形面積公式計算出AH=3,設正方形DEFG的邊長為x,則GF=x,MH=x,AM=3﹣x,再證明AGF∽△ABC,則根據(jù)相似三角形的性質得,然后解關于x的方程即可.

AHBCH,交GFM,如圖,

∵△ABC的面積是6,

BCAH=6,

AH==3,

設正方形DEFG的邊長為x,則GF=x,MH=x,AM=3﹣x,

GFBC,

∴△AGF∽△ABC,

,即,解得x=,

即正方形DEFG的邊長為,

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,∠A=60°,BDCE是△ABC的兩條角平分線,且BD,CE交于點F,如圖所示,用等式表示BE,BC,CD這三條線段之間的數(shù)量關系,并證明你的結論;

曉東通過觀察,實驗,提出猜想:BE+CD=BC,他發(fā)現(xiàn)先在BC上截取BM,使BM=BE,連接FM,再利用三角形全等的判定和性質證明CM=CD即可.

1)下面是小東證明該猜想的部分思路,請補充完整;

①在BC上截取BM,使BM=BE,連接FM,則可以證明△BEF______全等,判定它們全等的依據(jù)是______;

②由∠A=60°,BD,CE是△ABC的兩條角平分線,可以得出∠EFB=______°

2)請直接利用①,②已得到的結論,完成證明猜想BE+CD=BC的過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,AB=AC,AE=AF,連結BF,CE,交于O,連結AO.求證:

1B=∠C

2AO平分BAC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在正方形ABCD中,E是邊CD上一點(點E不與點C、D重合),連結BE.

(感知)如圖①,過點AAFBEBC于點F.易證ABF≌△BCE.(不需要證明)

(探究)如圖②,取BE的中點M,過點MFGBEBC于點F,交AD于點G.

(1)求證:BE=FG.

(2)連結CM,若CM=1,則FG的長為   

(應用)如圖③,取BE的中點M,連結CM.過點CCGBEAD于點G,連結EG、MG.若CM=3,則四邊形GMCE的面積為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC與△CDE都是等腰直角三角形,∠ACB90°,∠DCE90°,連結BE,AD,相交于點F.求證:

1ADBE

2ADBE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,正方形ABCD中,P是邊BC上一點,BEAP,DFAP,垂足分別是點E、F.

(1)求證:EF=AE﹣BE;

(2)聯(lián)結BF,如課=.求證:EF=EP.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知用2A型車和1B型車載滿貨物一次可運貨物10噸;用1A型車和2B型車載滿貨物一次可運貨11噸.某物流公司現(xiàn)有31噸貨物,計劃同時租用A型車a輛,B型車b輛,一次運完,且恰好每輛車都載滿貨物.根據(jù)以上信息,解答下列問題:

1)用1A型車和1B型車都載滿貨物一次可分別運貨多少噸?

2)請你幫該物流公司設計租車方案.若A型車每輛需租金100/次,B型車每輛需租金120/次.請選出最省錢的租車方案,并求出最少租車費.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于E,F若點DBC邊的中點,點M為線段EF上一動點,則周長的最小值為  

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】足球訓練中,為了訓練球員快速搶斷轉身,教練在東西方向的足球場上畫了一條直線,要求球員在這條直線上進行折返跑訓練,如果約定向西為正,向東為負,將某球員的一組折返距練習記錄如下(單位:米)

球員最后到達的地方在出發(fā)點的哪個方向?距出發(fā)點多遠?

球員訓練過程中,最遠處離出發(fā)點 米?

球員在這一組練習過程中,共跑了多少米?

查看答案和解析>>

同步練習冊答案