精英家教網 > 初中數學 > 題目詳情

【題目】如圖,點O斜邊AB上的一點,以OA為半徑的BC切于點D,與AC交于點E,連接AD.

1)求證:AD平分

2)若,,求陰影部分的面積.(結果保留

【答案】1)見解析;(2

【解析】

1)由Rt中,切BC于D,易證得AC∥OD,由半徑相等可證得∠OAD=∠ADO,繼而證得AD平分∠CAB;

2)如圖,連接ED,根據(1)中AC∥OD和菱形的判定和性質得到四邊形AEDO是菱形,則△AEM≌△DMO,則圖中陰影部分的面積=扇形EOD的面積.

(1)證明:∵切BC于D,
∴OD⊥BC,
∵AC⊥BC,
∴AC∥OD,
∴∠CAD=∠ADO,
∵OA=OD,
∴∠OAD=∠ADO,
∴∠OAD=∠CAD,
即AD平分∠CAB;
(2)設EO與AD交于點M,連接ED.


∴∠B=30°,
∴∠BAC=60°,
∵OA=OE,
∴△AEO是等邊三角形,
∴AE=OA,∠AOE=60°,
∴AE=AO=OD,
又由(1)知,AC∥OD即AE∥OD,
∴四邊形AEDO是菱形,則△AEM≌△DMO,∠EOD=60°,
,

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,直線y=﹣x+3x軸、y軸分別交于B、C兩點,經過BC兩點的拋物線yx2+bx+cx軸的另一個交點為A,頂點為P

1)求該拋物線的解析式;

2)當0x3時,在拋物線上求一點E,使CBE的面積有最大值;

3)在該拋物線的對稱軸上是否存在點M,使以C、P、M為頂點的三角形為等腰三角形?若存在,請寫出所符合條件的點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】觀察等式:1+2+22231;1+2+22+23241;1+2+22+23+24251;若1+2+22+…+292101m,則用含 m 的式子表示 211+212 + …+218+219 的結果是(

A.B.C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】二次函數的圖像如圖所示,下列結論正確是( )

A. B. C. D. 有兩個不相等的實數根

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,以為圓心作⊙,⊙軸交于、,與軸交于點,為⊙上不同于、的任意一點,連接、,過點分別作.設點的橫坐標為,.當點在⊙上順時針從點運動到點的過程中,下列圖象中能表示的函數關系的部分圖象是(

A.B.C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】拋物線軸交于點C0,3),其對稱軸與軸交于點A20).

1)求拋物線的解析式;

2)將拋物線適當平移,使平移后的拋物線的頂點為D0,).已知點B22),若拋物線△OAB的邊界總有兩個公共點,請結合函數圖象,求的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AEBDE

1)若BCBD,,AD15,求△ABD的周長.

2)若∠DBC45°,對角線AC、BD交于點O,FAE上一點,且AF2EO,求證:CFAB

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線y=﹣2x+6x軸,y軸分別交A,B兩點,點A關于原點O的對稱點是點C,動點EA出發(fā)以每秒1個單位的速度運動到點C,點D在線段OB上滿足tanDEO2,過E點作EFAB于點F,點A關于點F的對稱點為點G,以DG為直徑作M,設點E運動的時間為t秒;

1)當點E在線段OA上運動,t  時,△AEF與△EDO的相似比為1;

2)當My軸相切時,求t的值;

3)若直線EGM交于點N,是否存在t使NG,若存在,求出t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商場試銷一種成本為每件元的服裝,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于,經試銷發(fā)現,銷售量(件)與銷售單價(元)符合一次函數,且時,;時,

求一次函數的表達式;

若該商場獲得利潤為元,試寫出利潤與銷售單價之間的關系式;銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少元?

查看答案和解析>>

同步練習冊答案