【題目】如圖,在△ABC中,AB=AC,AD平分∠BAC交BC于點D,在線段AD上任到一點P(點A除外),過點P作EF∥AB,分別交AC、BC于點E、F,作PQ∥AC,交AB于點Q,連接QE與AD相交于點G.
(1)求證:四邊形AQPE是菱形.
(2)四邊形EQBF是平行四邊形嗎?若是,請證明;若不是,請說明理由.
(3)直接寫出P點在EF的何處位置時,菱形AQPE的面積為四邊形EQBF面積的一半.
【答案】(1)見解析;(2)結(jié)論:四邊形EQBF是平行四邊形.見解析;(3)當P為EF中點時,S菱形AEPQ=S四邊形EFBQ.
【解析】
(1)先證出四邊形AEPQ為平行四邊形,關(guān)鍵是找一組鄰邊相等,由AD平分∠BAC和PE∥AQ可證∠EAP=∠EPA,得出AE=EP,即可得出結(jié)論;
(2)只要證明EQ∥BC,EF∥AB即可;
(3)S菱形AEPQ=EPh,S平行四邊形EFBQ=EFh,若菱形AEPQ的面積為四邊形EFBQ面積的一半,則EP=EF,因此P為EF中點時,S菱形AEPQ=S四邊形EFBQ.
(1)證明:∵EF∥AB,PQ∥AC,
∴四邊形AEPQ為平行四邊形,
∴∠BAD=∠EPA,
∵AB=AC,AD平分∠CAB,
∴∠CAD=∠BAD,
∴∠CAD=∠EPA,
∴EA=EP,
∴四邊形AEPQ為菱形.
(2)解:結(jié)論:四邊形EQBF是平行四邊形.
∵四邊形AQPE是菱形,
∴AD⊥EQ,即∠AGQ=90°,
∵AB=AC,AD平分∠BAC,
∴AD⊥BC即∠ADB=90°,
∴EQ∥BC
∵EF∥QB,
∴四邊形EQBF是平行四邊形.
(3)解:當P為EF中點時, S菱形AEPQ=S四邊形EFBQ
∵四邊形AEPQ為菱形,
∴AD⊥EQ,
∵AB=AC,AD平分∠BAC,
∴AD⊥BC,
∴EQ∥BC,
又∵EF∥AB,
∴四邊形EFBQ為平行四邊形.
作EN⊥AB于N,如圖所示:
∵P為EF中點
則S菱形AEPQ=EPEN=EFEN=S四邊形EFBQ.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在Rt△ABC中,∠C=90°,D是BC邊上一點,AC=6,CD=3,∠ADC=α.
(1)試寫出α的正弦、余弦、正切這三個函數(shù)值;
(2)若∠B與∠ADC互余,求BD及AB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,數(shù)軸上的點A,B,C,D,E表示連續(xù)的五個整數(shù),對應的數(shù)分別為a,b,c,d,e.
(1)若a=-3,則e = ;
(2)若a+e=0,則代數(shù)式b+c+d= ;
(3)若d是最大的負整數(shù),求代數(shù)式的值(寫出求解過程).
(4)若e=4,F也為數(shù)軸上一點,且BE=2FE,則F表示的數(shù)為 ;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】近年來,德強學校初中部中考屢創(chuàng)佳績,捷報頻傳.為了吸納更多的優(yōu)質(zhì)生源,學校決定要新建一棟層的教學大樓,每層樓有間教室,進出這棟大樓共有道門,其中兩道正門大小相同,兩道側(cè)門大小相同,進樓前為了保證學生安全,對道門進行了測試:正常情況下,當同時開啟一道正門和兩道側(cè)門時,分鐘可以通過名學生;當同時開啟一道正門和一道側(cè)門時分鐘可以通過名學生.
(1)正常情況下,平均每分鐘一道正門和一道側(cè)門各可以通過多少名學生?
(2)檢查中發(fā)現(xiàn),緊急情況時因?qū)W生擁擠,出門的效率將降低,安全檢查規(guī)定,在緊急情況下全大樓的學生應在分鐘內(nèi)通過這道門安全撤離.如果這棟教學樓每班預計招收45名學生,那么建造的這道門是否符合安全規(guī)定?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學為了解八年級學生的體能狀況,從八年級學生中隨機抽取部分學生進行體能測試,測試結(jié)果分為A,B,C,D四個等級.
請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:
(1)本次抽樣調(diào)查共抽取了 名學生?測試結(jié)果為C等級的學生數(shù)是 ,并補全條形圖;
(2)若從體能為A等級的2名男生2名女生中隨機的抽取2名學生,做為該校培養(yǎng)運動員的重點對象,請用列表法或畫樹狀圖的方法求所抽取的兩名恰好都是男生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為響應市收府關(guān)于”垃圾不落地·市區(qū)更美麗”的主題宣傳活動,某校隨機調(diào)查了部分學生對垃圾分類知識的掌握情況.調(diào)查選項分為“A:非常了解,B:比較了解C:了解較少,D:不了解”四種,并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖.
請根據(jù)圖中提供的信息,解答下列問題:
(1)把兩幅統(tǒng)計圖補充完整;
(2)若該校學生數(shù)1000名,根據(jù)調(diào)查結(jié)果,估計該校“非常了解”與“比較了解”的學生共有________名;
(3)已知“非常了解”的4名男生和1名女生,從中隨機抽取2名向全校做垃圾分類的知識交流,請用畫樹狀圖或列表的方法,求恰好抽到1男1女的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,點E是BC上一點(不與點B,C重合),點M是AE上一點(不與點A,E重合),連接并延長CM交AB于點G,將線段CM繞點C按順時針方向旋轉(zhuǎn)90°,得到線段CN,射線BN分別交AE的延長線和GC的延長線于D,F.
(1)求證:△ACM≌△BCN;
(2)求∠BDA的度數(shù);
(3)若∠EAC=15°,∠ACM=60°,AC=+1,求線段AM的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】、、三地依次在同一直線上,,兩地相距千米,甲、乙兩車分別從,兩地同時出發(fā),相向勻速行駛。行駛小時兩車相遇,再經(jīng)過小時,甲車到達地,然后立即調(diào)頭,并將速度提高后與乙車同向行駛,經(jīng)過一段時間后兩車同時到達地,則,兩地相距_____________千米.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com