如圖,點P是 ∠AOB的角平分線上一點,過點P作PC⊥OA于點C,且PC=3,則點P到OB的距離等于           ;
3

試題分析:如圖,過P點作PD⊥AB,由角平分線的性質(zhì)得PD=PC=3.
試題解析:過點P作PD⊥OB于D,
∵點P為∠AOB的角平分線上一點,PD⊥OB,PC=3,
∴PD=PC=3,
即點P到OA的距離為3

考點: 角平分線的性質(zhì).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,已知∠1+∠2=180°,∠3=∠B,試判斷∠AED與∠C的大小關系,并對結(jié)論進行說理.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

完成下面的證明.
已知,如圖所示,BCE,AFE是直線,
AB∥CD,∠1=∠2,∠3=∠4.
求證:AD∥BE
證明:∵  AB∥CD (已知)
∴ ∠4 =∠          (                                           )
∵ ∠3 =∠4 (已知)
∴  ∠3 =∠           (                                         )
∵∠1 =∠2 (已知)
∴∠1+∠CAF =∠2+ ∠CAF  (                                       )
即:∠          =∠         
∴ ∠3 =∠           (                                          )
∴ AD∥BE           (                                            )

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某同學在一次課外活動中,用硬紙片做了兩個直角三角形,見圖①、②.圖①中,;圖②中,.圖③是該同學所做的一個實驗:他將△的直角邊與△的斜邊重合在一起,并將△沿方向移動.在移動過程中,兩點始終在邊上(移動開始時點與點重合).
(1) 在△沿方向移動的過程中,該同學發(fā)現(xiàn):兩點間的距離  ;連接的度數(shù)       .(填“不變”、“ 逐漸變大”或“逐漸變小”)
(2) △在移動過程中,度數(shù)之和是否為定值,請加以說明;
(3) 能否將△移動至某位置,使的連線與平行?如果能,請求出此時的度數(shù),如果不能,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

小明在學習三角形知識時,發(fā)現(xiàn)如下三個有趣的結(jié)論:在Rt△ABC中,∠A=90°,BD平分∠ABC,M為直線AC上一點,ME⊥BC,垂足為E,∠AME的平分線交直線AB于點F.
(1)如圖①,M為邊AC上一點,則BD、MF的位置關系是             ;
如圖②,M為邊AC反向延長線上一點,則BD、MF的位置關系是            
如圖③,M為邊AC延長線上一點,則BD、MF的位置關系是               
(2)請就圖①、圖②、或圖③中的一種情況,給出證明.
我選圖     來證明.

 

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖所示,將平面圖形繞軸旋轉(zhuǎn)一周,得到的幾何體是( 。
A.球   B.圓柱C.半球  D.圓錐

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,直線l1∥l2,∠1=∠2=35°,∠P=90°,則∠3等于(   )
A.50°B.55°C.60°D.65°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,點的延長線上,下列條件中能判斷AB//CD的是(  )
A.∠3=∠4B.∠D=∠DCE
C.∠B=∠D D.∠1=∠2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,已知直線AB∥CD,∠C=115°,∠A=25°,則∠E=________.
A.70°B.80°C.90°D.100°

查看答案和解析>>

同步練習冊答案