【題目】為了增進(jìn)親子關(guān)系,豐富學(xué)生的生活,學(xué)校九年級(jí)(1)班家委會(huì)組織學(xué)生、家長(zhǎng)一起參加戶外拓展活動(dòng),所聯(lián)系的旅行社收費(fèi)標(biāo)準(zhǔn)如下:如果人數(shù)不超過(guò)24,人均活動(dòng)費(fèi)用為120元;如果人數(shù)超過(guò)24,每增加1人,人均活動(dòng)費(fèi)用降低2元,但人均活動(dòng)費(fèi)用不得低于85元,活動(dòng)結(jié)束后,該班共支付該旅行社活動(dòng)費(fèi)用3 520元,請(qǐng)問(wèn)該班共有多少人參加這次旅行活動(dòng)?

【答案】40

【解析】

首先判斷這次參加活動(dòng)的人數(shù)超過(guò)24人,再根據(jù)等量關(guān)系:人數(shù)人均活動(dòng)費(fèi)用=3520,列出方程 求解即可.

24人的費(fèi)用為24×120=2880元<3520元;

∴參加這次旅行活動(dòng)的人數(shù)超過(guò)24

設(shè)該班參加這次旅行活動(dòng)的人數(shù)為x,

根據(jù)題意,得[120-2(x-24)x=3520,

整理,得x-84x+1760=0

解得x=44,x=40,

x=44時(shí),120-2(x-24)=8085,不合題意,舍去;

x=40時(shí),120-2(x-24)=8885.

答:該班共有40人參加這次旅行活動(dòng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線yx2+bx+c與軸交于點(diǎn)A和點(diǎn)B,與y軸交于點(diǎn)C,作直線BC,點(diǎn)B的坐標(biāo)為(6,0),點(diǎn)C的坐標(biāo)為(0,﹣6).

1)求拋物線的解析式并寫出其對(duì)稱軸;

2D為拋物線對(duì)稱軸上一點(diǎn),當(dāng)△BCD是以BC為直角邊的直角三角形時(shí),求D點(diǎn)坐標(biāo);

3)若Ey軸上且位于點(diǎn)C下方的一點(diǎn),P為直線BC上的一點(diǎn),在第四象限的拋物線上是否存在一點(diǎn)Q.使以CE,P,Q為頂點(diǎn)的四邊形是菱形?若存在,請(qǐng)求出Q點(diǎn)的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,過(guò)點(diǎn)A3,4)的拋物線yax2+bx+4x軸交于點(diǎn)B(﹣10),與y軸交于點(diǎn)C,過(guò)點(diǎn)AADx軸于點(diǎn)D

1)求拋物線的解析式.

2)如圖1,點(diǎn)P是直線AB上方拋物線上的一個(gè)動(dòng)點(diǎn),連接PDAB于點(diǎn)Q,連接AP,當(dāng)SAQD2SAPQ時(shí),求點(diǎn)P的坐標(biāo).

3)如圖2,G是線段OC上一個(gè)動(dòng)點(diǎn),連接DG,過(guò)點(diǎn)GGMDGAC于點(diǎn)M,過(guò)點(diǎn)M作射線MN,使∠NMG60°,交射線GD于點(diǎn)N;過(guò)點(diǎn)GGHMN,垂足為點(diǎn)H,連接BH.請(qǐng)直接寫出線段BH的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,BC是⊙O的直徑,ODAC于點(diǎn)D,連接BD,半徑OEBC,連接EA,EABD于點(diǎn)F.若OD2,則BC_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為響應(yīng)足球進(jìn)校園的號(hào)召,我縣教體局在今年 11 月份組織了縣長(zhǎng)杯校園足球比賽.在某場(chǎng)比賽中,一個(gè)球被從地面向上踢出,它距地面的高度 h(m)可用公式 h=﹣5t2+v0t 表示,其中 t(s)表示足球被踢出后經(jīng)過(guò)的時(shí)間,v0(m/s)是足球被踢出時(shí)的速度,如果足球的最大高度到 20m,那么足球被踢出時(shí)的速度應(yīng)達(dá)到________m/s.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】畫出二次函數(shù)的圖象.

1)利用圖象求方程的近似很(結(jié)渠精確到);

2)設(shè)該拋物線的頂點(diǎn)為M,它與直線y=3的兩個(gè)交點(diǎn)分別為CD,求△MCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:在△ABC中,點(diǎn)D,E,F(xiàn)分別是邊AB,BC,CA上的動(dòng)點(diǎn),若△DEF∽△ABC(點(diǎn)D、E、F的對(duì)應(yīng)點(diǎn)分別為點(diǎn)A、B、C),則稱△DEF△ABC的子三角形,如圖.

(1)已知:如圖1,△ABC是等邊三角形,點(diǎn)D,E,F(xiàn)分別是邊AB,BC,CA上動(dòng)點(diǎn),且AD=BE=CF.

求證:△DEF△ABC的子三角形.

(2)已知:如圖2,△DEF△ABC的子三角形,且AB=AC,∠A=90°,若BE=,求CFAD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=-x2+4x+5

(1)用配方法將y=-x2+4x+5化成y=axh2+k的形式;

(2)指出拋物線的開(kāi)口方向、對(duì)稱軸和頂點(diǎn)坐標(biāo);

(3)若拋物線上有兩點(diǎn)Ax1,y1),B(x2,y2),如果x1>x2>2,試比較y1y2的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,DAB邊上一點(diǎn),連接CD,ECD的中點(diǎn),連接BE并延長(zhǎng)至點(diǎn)F,使得EF=EB,連接DFAC于點(diǎn)G,連接CF,

1)求證:四邊形DBCF是平行四邊形

2)若∠A=30°,BC=4,CF=6,求CD的長(zhǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案