已知一次函數(shù)
(1)為何值時(shí),的增大而減小?
(2)為何值時(shí),它的圖象經(jīng)過(guò)原點(diǎn)?

(1)k>4;(2)k=-4.

解析試題分析:(1)根據(jù)“y隨x的增大而減小”時(shí)比例系數(shù)小于0即可確定有關(guān)k的不等式,確定k的取值范圍即可;
(2)經(jīng)過(guò)原點(diǎn)則b=0,由此求解.
試題解析:(1)∵一次函數(shù)y=(4-k)x-2k2+32,y隨x的增大而減小,
∴4-k<0
∴k>4;
(2)∵一次函數(shù)y=(4-k)x-2k2+32,它的圖象經(jīng)過(guò)原點(diǎn),
∴-2k2+32=0
解得:k=±4
∵4-k≠0
∴k=-4.
考點(diǎn):一次函數(shù)圖象與系數(shù)的關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,一次函數(shù)y=3x的圖象與反比例函數(shù)的圖象的一個(gè)交點(diǎn)為A(1,m).

(1)求反比例函數(shù)的解析式;
(2)若點(diǎn)P在直線OA上,且滿足PA=2OA,直接寫出點(diǎn)的坐標(biāo)(不寫求解過(guò)程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,直線PA是一次函數(shù)的圖象,直線PB是一次函數(shù)的圖象.

(1)求A、B、P三點(diǎn)的坐標(biāo);(2)求四邊形PQOB的面積;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,的圖象與反比例函數(shù)的圖象相交于點(diǎn)A(2,3)和點(diǎn)B,與x軸相交于點(diǎn)C(8,0).

(1)求這兩個(gè)函數(shù)的表達(dá)式;
(2)請(qǐng)直接寫出當(dāng)x取何值時(shí),y1>y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

華盛印染廠生產(chǎn)某種產(chǎn)品,每件產(chǎn)品出廠價(jià)為30元,成本價(jià)為20元(不含污水處理部分費(fèi)用).在生產(chǎn)過(guò)程中,平均每生產(chǎn)1件產(chǎn)品就有0.5立方米污水排出,所以為了凈化環(huán)境,工廠設(shè)計(jì)了兩種對(duì)污水進(jìn)行處理的方案并準(zhǔn)備實(shí)施.
方案一:工廠污水先凈化處理后再排出,每處理1立方米污水所用的原料費(fèi)用為2元,并且每月排污設(shè)備損耗等其它各項(xiàng)開(kāi)支為27000元.
方案二:將污水排放到污水處理廠統(tǒng)一處理,每處理1立方米污水需付8元排污費(fèi).
(1)若實(shí)施方案一,為了確保印染廠有利潤(rùn),則每月的產(chǎn)量應(yīng)該滿足怎樣的條件?
(2)你認(rèn)為該工廠應(yīng)如何選擇污水處理方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,雙曲線與直線相交于點(diǎn)A(4,m)、B.

(1)求m的值及直線的函數(shù)表達(dá)式;
(2)求△AOB的面積;
(3)當(dāng)x為何值時(shí),?(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,四邊形OABC是矩形,點(diǎn)D在OC邊上,以AD為折痕,將△OAD向上翻折,點(diǎn)O恰好落在BC邊上的點(diǎn)E處,若△ECD的周長(zhǎng)為2,△EBA的周長(zhǎng)為6.

(1)矩形OABC的周長(zhǎng)為          
(2)若A點(diǎn)坐標(biāo)為,求線段AE所在直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)汽車油箱中的余油量Q(升)是它行駛的時(shí)間(小時(shí))的一次函數(shù).某天該汽車外出時(shí),油箱中余油量與行駛時(shí)間的變化關(guān)系如圖:

(1)根據(jù)圖象,求油箱中的余油Q與行駛時(shí)間的函數(shù)關(guān)系.(7分)
(2)從開(kāi)始算起,如果汽車每小時(shí)行駛40千米,當(dāng)油箱中余油 20升時(shí),該汽車行駛了多少千米?(5分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

21.(2013年四川攀枝花8分)某文具店準(zhǔn)備購(gòu)進(jìn)甲,乙兩種鉛筆,若購(gòu)進(jìn)甲種鋼筆100支,乙種鉛筆50支,需要1000元,若購(gòu)進(jìn)甲種鋼筆50支,乙種鋼筆30支,需要550元.
(1)求購(gòu)進(jìn)甲,乙兩種鋼筆每支各需多少元?
(2)若該文具店準(zhǔn)備拿出1000元全部用來(lái)購(gòu)進(jìn)這兩種鋼筆,考慮顧客需求,要求購(gòu)進(jìn)甲中鋼筆的數(shù)量不少于乙種鋼筆數(shù)量的6倍,且不超過(guò)乙種鋼筆數(shù)量的8倍,那么該文具店共有幾種進(jìn)貨方案?
(3)若該文具店銷售每支甲種鋼筆可獲利潤(rùn)2元,銷售每支乙種鋼筆可獲利潤(rùn)3元,在第(2)問(wèn)的各種進(jìn)貨方案中,哪一種方案獲利最大?最大利潤(rùn)是多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案